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Abstract

Meat and seafood spoilage ecosystems harbor extensive bacterial genomic diversity that is

mainly found within a small number of species but within a large number of strains with dif-

ferent spoilage metabolic potential. To decipher the intraspecies diversity of such micro-

biota, traditional metagenetic analysis using the 16S rRNA gene is inadequate. We

therefore assessed the potential benefit of an alternative genetic marker, gyrB, which

encodes the subunit B of DNA gyrase, a type II DNA topoisomerase. A comparison between

16S rDNA-based (V3-V4) amplicon sequencing and gyrB-based amplicon sequencing was

carried out in five types of meat and seafood products, with five mock communities serving

as quality controls. Our results revealed that bacterial richness in these mock communities

and food samples was estimated with higher accuracy using gyrB than using16S rDNA.

However, for Firmicutes species, 35% of putative gyrB reads were actually identified as

sequences of a gyrB paralog, parE, which encodes subunit B of topoisomerase IV; we there-

fore constructed a reference database of published sequences of both gyrB and pare for

use in all subsequent analyses. Despite this co-amplification, the deviation between relative

sequencing quantification and absolute qPCR quantification was comparable to that

observed for 16S rDNA for all the tested species. This confirms that gyrB can be used suc-

cessfully alongside 16S rDNA to determine the species composition (richness and even-

ness) of food microbiota. The major benefit of gyrB sequencing is its potential for improving

taxonomic assignment and for further investigating OTU richness at the subspecies level,

thus allowing more accurate discrimination of samples. Indeed, 80% of the reads of the 16S

rDNA dataset were represented by thirteen 16S rDNA-based OTUs that could not be

assigned at the species-level. Instead, these same clades corresponded to 44 gyrB-based

OTUs, which differentiated various lineages down to the subspecies level. The increased

ability of gyrB-based analyses to track and trace phylogenetically different groups of strains
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will generate improved resolution and more reliable results for studies of the strains impli-

cated in food processes.

Introduction

Effective management of our food chain is strongly dependent on a thorough understanding

of microbial ecology, which has applications in elucidating contamination routes, controlling

microbial food spoilage, predicting shelf life accurately, and improving food safety. In particu-

lar, improved precision in identifying the species and/or strains implicated in the microbial

spoilage of meat and seafood could contribute to a better understanding of microbial ecology

far beyond the spoilage mechanism. Bacteria are the predominant spoilage micro-organisms

on meat and seafood, but the spoilage microbiota is usually not very complex: between 15 to

80 species, on average, with the population abundances of dominant and subdominant strains

typically differing by four orders of magnitude [1–5]. This microbiota also has limited phyloge-

netic diversity, as most species belong to the phyla Firmicutes (orders Lactobacillales, Bacillales)
or Proteobacteria (orders Enterobacterales, Pseudomonadales, and Vibrionales) among which a

large majority is known and cultivable under laboratory conditions. Yeasts and molds are also

present in lower proportions, but are rarely monitored.

Despite their importance, we still understand very little about the actual roles played by the

spectrum of bacterial species involved in spoilage. Spoilage development is an intricate biologi-

cal phenomenon, which can be species- or even strain-specific [6, 7]. Certain microbial taxa

may be influenced differently by a given set of storage conditions, and some microbial species

may develop unpredictably during meat storage, which together influence the time and type of

spoilage [8]. Consequently, more information is required in order to assess, within each spoil-

age group, which species or intra-species lineages are actually involved in the spoilage of food

products [9, 10]. Strain’s variability arises from differences in food origins, routes of contami-

nation, and production processes of the food itself, but also in the variety of packaging and

storage methods used. These factors, and the interactions among them, have the potential to

generate a wide diversity of bacterial strains through selective pressures. Furthermore, many

food-borne bacteria that are involved in spoilage also display broad genomic diversity at the

intraspecies level [11–15]. Within a given species, certain strains may carry key gene clusters

involved in the fitness or adaptation to specific conditions or in the production of compounds

important for food fermentation or spoilage while other strains do not. To analyze such func-

tional genomic diversity, shotgun metagenomic analysis is of course the most powerful

approach. However, this strategy requires extensive sequencing efforts to capture the genetic

diversity of sub-dominant populations, whose abundances can differ by several orders of mag-

nitude. Furthermore, it is not cost effective in the context of the large sampling campaigns

often required to study fluctuations in food microbial diversity over the course of a production

process. To address these limitations, it has become common to use 16S-rDNA based ampli-

con sequencing (also called metagenetic analysis) and then, based on the species identified,

infer some of the functions carried out by the microbiota with tools like PICRUST [16] or

Tax4Fun [17].

Despite the extraordinary insights that have been gained through 16S rDNA profiling anal-

yses, taxonomic methods based on this approach have several shortcomings, particularly at

the shallowest taxonomic levels. The extremely slow rate of evolution of this gene hinders the

resolution of closely related bacteria into individual 16SrDNA phylotypes. In particular, the
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practice of clustering OTUs at 97% (or even 99%) 16S rDNA sequence identity will group

together functionally diverse lineages, thus concealing significant amounts of species- and

strain-level variation. Moreover, variation in the number of rRNA operons among different

bacterial species creates problems for the quantification of cell numbers or taxon abundances

based on 16S rDNA phylotypes [18, 19]. Biases in quantification also arise from chimera for-

mation due to the highly conserved sequence of the gene. The resulting artificial sequencing

errors then inflate estimates of OTU diversity. This marker, specifically the rDNA V1-V3

region, has been used in many studies of food microbiota. Its popularity was based on the pres-

ence of three variable regions at the 5’ end of the 16S rRNA gene, which offered sufficient vari-

ability with which to discriminate among species of lactic acid bacteria (order Lactobacillales),
one of the bacterial groups that is predominant in food. However, analysis of this region

required long sequencing reads (>550 bp), which was only possible with pyrosequencing tech-

nology. Recently, however, a more-accurate technology (Miseq pair-end sequencing) has

come into favor because it generates increased sequencing depth. As a result, studies have

shifted their focus to the 16S rDNA V3-V4 region, because this region is shorter (~450 bp) and

thus promotes improved merging of forward and reverse reads. Unfortunately, the 16S rDNA

V3-V4 region does not offer the same discriminatory power as the V1-V3 region for identify-

ing species-level diversity. The traditional 97% identity threshold used for OTU clustering

does not adequately resolve species diversity when only a few variable regions of the 16S gene

are amplified; indeed, depending on the regions used, results may vary widely. For these rea-

sons, 16S rDNA amplicon data are often analyzed at the genus level only, but these results lack

the power to yield informative answers to many questions, including those mentioned in the

previous paragraph. Because of this, we sought an alternative marker that could improve diver-

sity analysis at the species- or even intraspecies-level while keeping the ease-of-use and cost-

effectiveness of amplicon sequencing.

To address this type of problem, some studies (not dedicated to food microbiota) have ven-

tured beyond the analysis of 16S sequences by targeting coding regions with conserved primers

or by extracting coding-gene orthologs from shotgun metagenomics surveys [20–22]. Indeed,

advances in molecular microbial ecology have opened avenues for the design of taxonomically

meaningful, highly specific PCR primers. Protein-coding genes, which evolve much faster

than the 16S rRNA gene, are useful for differentiating among more-recently diverged lineages,

but their application is complicated by difficulties in designing low-redundancy primers that

amplify homologous regions from distantly related taxa. Thus, there is no broadly applicable

community-profiling method based on protein-coding genes that is analogous to those based

on rRNA genes. One difficulty in devising such a method stems from the high variability of

protein-coding genes, particularly at synonymous codon positions, which thwarts the design

of universally conserved primers. Additionally, bacterial lineages vary in their genomic con-

tents, which suggests that different genes might be needed to resolve the diversity within cer-

tain taxonomic groups. The genes that have been proposed for this task include those

encoding 23S rRNA, DNA gyrase subunit B (gyrB) [21, 23, 24], RNA polymerase subunit B

(rpoB) [25], TU elongation factor (tuf) [26], DNA recombinase protein (recA), protein synthe-

sis elongation factor-G (fusA), and dinitrogenase protein subunit D (nifD) [27]. An ideal can-

didate should contain well-conserved regions to facilitate the design of primers and molecular

probes to be used in the identification of food microbiota.

Among these, gyrB has a higher rate of base substitution than 16S rDNA does, and shows

promise for community-profiling applications [28–30]. This gene is essential and ubiquitous

in bacteria and is sufficiently large in size for use in analysis of microbial communities [31]. It

is a single-copy housekeeping gene that encodes the subunit B of DNA gyrase, a type II DNA

topoisomerase, and therefore plays an essential role in DNA replication. Furthermore, the
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gyrB gene is also present in Eukarya and sometimes in Archaea but it shows enough sequence

dissimilarity between the three domains of life to be used selectively for Bacteria [32].

The main objective of the current work was to validate the usefulness of gyrB as an alterna-

tive phylogenetic marker to accurately and precisely discriminate closely related species within

various food microbiota. We therefore carried out a comparison of amplicon sequencing

based on 16S rDNA V3-V4 and that based on gyrB using five types of meat and seafood prod-

ucts (pork sausage, poultry sausage, cod filet, salmon filet, and ground beef). These products

were specifically chosen because their microbiota have been extensively studied [1]and com-

prise a broad spectrum of bacterial species from the phyla Firmicutes and Proteobacteria. In

order to assess the added value brought by gyrB sequencing with respect to 16S rDNA sequenc-

ing, five mock communities (MC) were constructed as quality controls, using 15 different spe-

cies with a high degree of intraspecies diversity.

Materials and methods

Preparation of mock bacterial communities

Bacterial strains were grown overnight at 20˚C in 5 ml of either MRS broth (Lactobacillus, Leu-
conostoc), M17 + 0.5% w/v of glucose broth (Lactococcus), or BHI broth (Carnobacterium, Bro-
chothrix, Serratia, Pseudomonas). The cell concentration of each culture was checked by

measuring the optical density at 600 nm. Cells were pelleted by a 10-min centrifugation at

3,000 x g at 4˚C and washed with sterile deionized water. After a second centrifugation at

3,000 x g, cells were re-suspended in sterile water so as to obtain a concentration of 109 cells.

ml-1. Mock communities were then created by mixing the different strains at the desired con-

centration ratio. One milliliter of the mock community mixture was collected for DNA extrac-

tion. Mock community 5 (MC5), which was of unknown bacterial composition, was obtained

by mixing the bacterial pellets obtained after the extraction (see next paragraph) of eight differ-

ent food products (ground beef, pork fillet, lamb fillet, turkey fillet, salmon fillet, cod fillet,

whiting fillet, and rainbow trout fillet) analyzed on the use-by date. Details of the composition

of these bacterial MCs are presented in Table 1.

DNA extraction and barcoding PCRs for MiSeq sequencing

DNA extraction of the bacterial microbiota. Ten grams of each food-product batch

were homogenized in 40 ml of sterile ultrapure water supplemented with 1% Tween 80 (Acros

Organics, Waltham, USA) for 30 s in a stomacher. Then, 32 ml of the shreds were collected

and centrifuged at 500 × g for 3 min at 4˚C to spin down the food matrix fibers and debris.

The still-turbid supernatant (~25 ml) was collected and centrifuged at 3,000 × g for 5 min at

4˚C to spin down the bacterial cells. The bacterial pellet thus obtained was washed in 1 ml of

sterile ultrapure water and collected after centrifugation at 3,000 × g for 5 min at 4˚C to serve

directly for DNA extraction or to compose MC5 for further DNA extraction.

To minimize potential biases associated with the DNA extraction method, bacterial DNA

from all samples was extracted according to the manufacturer’s instructions with two different

kits: the PowerFood Microbial DNA Isolation kit (MoBio Laboratories Inc., Carlsbad, USA)

and the High Pure PCR Template Preparation kit (Roche Diagnostics Ltd, Burgess Hill, West

Sussex, UK). For each sample, both DNA extracts were pooled.

Purification and quantification of initial 16S rDNA (V3-V4) and gyrB PCR. Amplicon

libraries were constructed following two rounds of PCR amplification. The first amplification

of the ~450-bp V3-V4 hypervariable regions of the bacterial 16S rRNA gene was performed

with the primers V3F (5’-ACGGRAGGCWGCAGT-3’)and V4R (5’-TACCAGGGTATCTA
ATCCT-3’)[46]. In parallel, the degenerate primers F64 (5’-MGNCCNGSNATGTAYAT
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HGG-3’) and R353 (5’-CNCCRTGNARDCCDCCNGA-3’) were used to amplify a ~280-bp

region of gyrB. The primers’ binding sites correspond to Escherichia coli E22 (IMG taxon ID,

638341087) nucleotide positions 64 to 353 as described in[21]. Forward and reverse primers

carried the Illumina 5’-CTTTCCCTACACGACGCTCTTCCGATCT-3’ and the 5’-
GGAGTTCAGACGTGTGCTCTTCCGATCT-3’ tails, respectively. The first round of PCRs was

performed with two different high-fidelity polymerases: Moltaq 16S (Molzym Life Science,

Bremen, Germany) for the 16S V3-V4 region and the AccuPrime Taq DNA polymerase system

(Invitrogen, Carlsbad, USA) for gyrB, using in both cases the manufacturer’s protocol and 2 μL

of microbial DNA (approximately 10 ng). The cycling conditions for the V3F/V4R 16S reac-

tion mixtures were: 94˚C for 1 min, followed by 30 cycles of amplification at 94˚C (60 s), 65˚C

(60 s), and 72˚C (60 s), with a final extension step of 10 min at 72˚C. Amplification of gyrBwas

performed as follows: 94˚C (2 min) followed by 35 cycles of amplification at 94˚C (30 s), 55˚C

(60 s), and 68˚C (90 s), with a final extension step of 10 min at 68˚C. For the V3-V4 region, the

final primer concentration used was 200 nM, whereas for gyrB, the final primer concentration

Table 1. Bacterial composition of mock communities (in percentage of each taxona).

Phyla& their associated Bacterial species Strains Reference of strains Mock communities

Inter-species Intra-species

MC1 MC2 MC3 MC4

Firmicutes - 99% 50% 1% 65%

Proteobacteria 1% 50% 99% 35%

Composition within the Firmicutes (summed up to 100%)

Lactobacillus algidus CMTALT10 [33] 5% -

Lactobacillus sakei 23K [34] 35% 20%

DSM 20017 [35] - 20%

DSM15831 [35] - 20%

Lactococcus piscium CMTALT02 [33] 10%

Brochothrix thermosphacta 160x8 [33] 5% 10%

cH814 [36] - 5%

ATCC11509 [37] - 5%

Carnobacterium divergens MFPA43A14-05 [33] 10% -

Carnobacterium maltaromaticum DSM20342 [35] 10% -

Leuconostoc gelidum subsp. gasicomitatum MFPA44A14-01 [33] 5% 15%

Leuconostoc gelidum subsp. gelidum DSM5578 [38] - 5%

Weissella viridescens MFPC16A28-05 [33] 20% -

Composition within the Proteobacteria (summed up to 100%)

Pseudomonas fragi ATCC4973 [39] 20% -

Pseudomonas lundensis MFPA15A12-05 [33] 15% 20%

MFPB42A12-09 [40] - 10%

PCAi D2.2 [41] - 10%

Acinetobacter guillouiae MFPA43A14-04 [40] 5% -

Photobacterium phosphoreum CIP105612 [42] 25% -

Serratia proteamaculans MFPA44A14-05 [43] 10% 20%

1C2F [36] - 20%

CIP 103236 [44] - 20%

Hafnia alvei CIP57.31 [45] 5% -

Morganella psychrotolerans MFPA43A14-03 [40] 20% -

aTaxon percentages are first given comparatively for Firmicutes and Proteobacteria. Within each phylum, the percentages are then given for each taxon.

https://doi.org/10.1371/journal.pone.0204629.t001
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was increased to 1000 nM to compensate for the high degeneracy of the primers. All PCRs

were performed in triplicate. Replicates were pooled and the amplified DNA was purified with

a QIAquick kit (Qiagen, Hilden, Germany). Amplicon size, quality, and quantity were checked

on a DNA1000 chip (Agilent Technologies, Paris, France).

Purification and quantification of the second Illumina Miseq PCR. In the second

round of PCR, sample multiplexing was performed by adding tailor-made 6-bp unique index

tags to the ends of the forward and reverse adapters (5’-AATGATACGGCGACCACCGAGAT
CTACACT-3’ and 5’-CAAGCAGAAGACGGCATACGAGAT-NNNNNN-GTGACT-3’, respec-

tively). This second PCR step was performed on 50–200 ng of purified amplicons from the

first PCR using 2.5 U of a DNA-free Taq DNA Polymerase and 1xTaq DNA polymerase buffer.

The buffer was composed of 10 nmol of dNTP mixture (Sigma-Aldrich, Saint-Louis, USA), 25

nmol of each primer (Eurofins, Luxembourg, Luxembourg), and nuclease-free water (Qiagen,

Hilden, Germany) up to a final volume of 50 μl. The reaction was carried out on a T100 ther-

mal cycler with an initial denaturation step (94˚C for 10 min), 12 cycles of amplification (94˚C

for 1 min, 65˚C for 1 min, and 72˚C for 1 min), and a final elongation step at 72˚C for 10 min.

Amplicons were purified using Clean PCR magnetic beads (CleanNA, Alphen aan den Rijn,

The Netherlands) in a 96-well format. The concentration of the purified amplicons was mea-

sured using a Nanodrop spectrophotometer (Thermo Scientific, Waltham, USA) and the qual-

ity of a subset of amplicons (12 samples per sequencing run) was controlled on a Fragment

Analyzer (AATI, Santa Clara, USA) with the ADNdb 910 reagent kit (35–1,500 bp). Controls

were included to ensure that the high number of PCR cycles (35 cycles for PCR1 + 12 cycles

for PCR2) did not create significant amounts of PCR chimeras or other artifacts. Negative con-

trols were also included; these used nuclease-free water (Qiagen, Hilden, Germany) in place of

the extracted DNA during the library preparation. All libraries were pooled using equal

amounts in order to generate the equivalent number of raw reads for each library. The DNA

concentration of the pool (no dilution, diluted 10x or25x in EB + 0.5% Tween buffer) was

quantified on a Qubit Fluorometer (Thermofisher Scientific, USA). The final pools used for

sequencing had a concentration between 5 and 20 nM.

Illumina Miseq sequencing. The pool was denatured (NaOH 0.1N) and diluted to 7 pM.

PhiX Control v3 (Illumina, San Diego, USA) was added to the pool at 4.5% of the final concen-

tration. From this mixture, 600 μl were loaded onto the Illumina MiSeq cartridge according to

the manufacturer’s instructions using the MiSeq Reagent Kit v3 (2x300 bp paired-end reads,

15 Gb output). FastQ files were generated at the end of the run (MiSeq Reporter software, Illu-

mina, USA) for quality control. The quality of the run was checked internally using PhiX Con-

trol and then each paired-end sequence was assigned to its sample of origin using the

multiplexing index tag. Raw read sequences were deposited at the Sequence Read Archive

under the accession numbers SAMN09070427to SAMN09070506.

Quantification of target species using real-time PCR

Real-time PCR quantification of 13out of the 16 target species added in the mock communities

was carried out on all food samples and mock communities using a set of specific probes previ-

ously published by our team [47] and described in S1 Table. The qPCR amplifications were

performed on a RealPlex thermal cycler (Eppendorf, Hamburg, Germany). All analyses were

performed in duplicate using a 10-fold dilution of the DNA extracts to avoid inhibitor effects.

The reaction mixture consisted of 10 μM of each primer (forward and reverse), 10 μl of SYBR

MESA GREEN master mix reagent kit (Eurogentec, Liège, Belgium), and 4.2 μl of sterile

water. A total of 15 μL of this mixture was added to 5 μL of DNA extract. Each PCR run

included a positive control isolated from type strains of each targeted species, and a negative
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control. The qPCR amplification started with one cycle at 95˚C for 2 min, followed by 40 cycles

of denaturation at 95˚C for 15 s and annealing at 60˚C for 1 min. The step for melting-curve

checking was performed at 95˚C for 15 s, 1 min at 60˚C, and 20 min ramp from 60˚C to 95˚C.

Average threshold cycle (CT) was calculated for each pair of samples. The population level of

the target bacteria was estimated in CFU.g-1 of food sample. Two equations were used (Eqs 1

and 2 below), depending on whether the gene probe was based on the 16S rRNA gene or on

another housekeeping gene, respectively.

CFU:g � 1 ¼
eCt � 39:43

� 1:52
ð1Þ

CFU:g � 1 ¼
eCt � 40:98

� 1:44
ð2Þ

These equations were obtained from several independent biological replicates of calibration

curves, which were carried out as described previously [47]. To convert the relative number of

reads obtained for a given species in each sample (nr) into an absolute number of reads nor-

malized by the total bacterial cell concentration in that sample (na), Eq 3 was applied.

na ¼
nr � Q
Nt

ð3Þ

where Q is the total concentration of bacterial cells in the sample in CFU.g-1 as obtained by

qPCR using the all_bacteria primers (see S1 Table), and Nt is the normalized sum of reads in

the sample.

Based on these results, a linear model was constructed using the lm function in R. For each

species, we calculated the deviation between the experimental number of reads and the

expected value obtained with the linear model in order to compare amplicon quantification

and quality. Positive deviations were attributed to an overestimation of the relative abundance

of a given species due to sequencing bias, while negative deviations were associated with an

underestimation of the proportion of the species within the ecosystem.

Quality filtering, definition of OTUs, and taxonomic assignment

The quality of the sequencing was first evaluated using FastQC [48]. Individual reports were

merged into a single one with MultiQC [49]. The 16S rDNA and gyrB paired-end sequences

were merged into contigs with PEAR v0.9.10 [50]. Adapters were trimmed with cutadapt v1.12

[51]. Low-quality bases at the extremities of sequences were removed using Sickle v1.330 [52].

Data were subsequently imported into the FROGS (Find Rapidly OTUs with Galaxy Solution)

pipeline [53]. Sequences were dereplicated before being clustered using SWARM [54] with a

local clustering threshold with a distance of 3. Chimeras were removed with vsearch [55]. The

resulting sequences were filtered for spurious OTUs likely arising from sequencing artifacts

(OTUs with low abundance and low frequency) by keeping only those appearing more than 10

times in the whole dataset [56]. Taxonomic assignment of OTUs that corresponded to

16SrRNA sequences was performed using Silva 128 SSU [57] as reference database, while a

homemade databank was created for the gyrB and parE sequences (see below), using in both

cases the Blastn+ algorithm[58]. Our Bioinformatic report for these initial steps can be found

here: http://genome.jouy.inra.fr/analyses/REDLOSSES-gyrB/report.html.
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Construction of gyrB and parE database

A total of 44,494 genomes were downloaded from Ensembl Bacteria (release 38, January 2018)

[59]. Then, embl files were parsed with a BioPython library to obtain only sequences of gyrB
and parE in FASTA format. To be sure we kept only sequences of interest, we processed all

sequences with cutadapt v1.12 [51]. If 5’ or 3’ extremity primers were not found, the sequences

were discarded. The resulting 44,572 gyrB and 30,549 parE sequences were combined with

another 30,525 sequences extracted from IMG (release 4.3) and with 389 additional sequences

from strains and species known to be important in food microbiota that were not represented

in Ensembl and IMG [60]. The final database contained 106,035 sequences which were sub-

mitted to FROGS analysis for taxonomic assignment.

Analysis of alpha and beta diversity

Bacterial diversity was analyzed using the R package Phyloseq [61]. To facilitate comparative

analysis between 16S rDNA data and gyrB data, a common Phyloseq object was created which

comprised a single otu_table, sample_data, and tax_table (the whole dataset is available at

(DOI:10.6084/m9.figshare.7083209). OTU abundance was normalized using the median

sequencing depth of all samples (for both 16S rDNA and gyrB). Analyses of alpha and beta

diversity were then carried out using standard or custom Phyloseq command lines. Our R

script (redlosses_phyloseq_custom.R), which includes all commands performed to create our

figures, is available for download at (DOI:10.6084/m9.figshare.7083254).

Construction of phylogenetic trees

Complete sequences of gyrB and parE genes were extracted from the genome database. They

were trimmed with cutadapt v1.12 in order to keep only sequences that were amplified by the

degenerate primers. The phylogenetic trees were constructed by nucleotide alignment, using

the Kimura 2-parameter algorithm and the neighbor-joining method implemented in MEGA

6 software [62].

Results

Study design and sample collection

Food samples. Five different food products (ground beef burgers, pork sausages, poultry

sausages (turkey), cod fillets, and salmon fillets), all packaged under modified atmosphere,

were selected for this study. For each food item, three batches (biological replicates) were pur-

chased in supermarkets one week apart and stored at 8˚C until the product’s use-by date. The

nomenclature of the food samples and their associated dataset items are described in Table 2.

These products were chosen because the composition of their microbiota has already been

well described [1, 47]. In addition, the different communities offered a good system with

which to study variations in abundance between the two main bacterial phyla (Firmicutes and

Proteobacteria) and the various species therein.

Mock communities. In order to assess the benefits of gyrB amplicon sequencing com-

pared to that of 16S rDNA, five mock communities (MC) were constructed as quality controls.

Three of these (MC1, MC2, MC3) consisted of 15 strains belonging to 15 genetically diverse

bacterial species which were mixed at different cell concentrations; species belonged to the two

main phyla (Firmicutes and Proteobacteria) that are commonly recovered in the food products

used as test samples. Briefly, MC1 consisted of 99% Firmicutes and 1% Proteobacteria, MC2

contained 50% Firmicutes and 50% Proteobacteria, and MC3 was composed of 1% Firmicutes
and 99% Proteobacteria. The fourth mock community (MC4) was designed to assess the
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species-level or even intraspecies-level accuracy of taxonomic assignment. It comprised14-

strains that have been completely sequenced and are affiliated with five of the bacterial species

previously selected for MC1-3. The fifth mock community (MC5) of unknown complex com-

position was designed to maximize overall alpha diversity: it was created by mixing the bacte-

rial pellets extracted from eight different food products. With this MC, we wanted to compare

the relative abilities of the two marker genes to accuracy capture a high level of species

diversity.

Bacterial richness

Food samples and mock communities were sequenced at an average of 66,012 ± 21,134 reads.

Rarefaction curves (Fig 1) performed on quality-filtered reads indicated that sequencing depth

was sufficient for all samples, including, notably, the complex mock community MC5. Bacte-

rial OTU richness (Table 3) were comparable between the two markers only for four product

types: salmon fillet, cod fillet, ground beef burger, and poultry sausage. For pork sausages, the

two markers yielded significantly different results. The most striking difference was found in

the bacterial OTU richness obtained from pork sausages, which was much higher when ana-

lyzed with the 16S rDNAV3-V4 region than with gyrB. Interestingly, the results from the three

biological replicates (batches) of cod fillet were very different from each other, and this differ-

ence was even more pronounced in the gyrB analysis than in the 16S rDNA analysis. When we

merged OTUs into genus-level assignments and re-estimated richness (Table 3), the two mark-

ers gave much more consistent results, but again with the exception of the pork sausage

samples.

Similarly, OTU richness in mock communities MC1 and MC4 was higher in the 16S analy-

sis than in that based on gyrB; the latter gene yielded values that were closer to the number of

different species and genera that we had expected to be detected (n = 15). For mock commu-

nity MC5, its unique composition (combined bacterial community from eight different food

products) was expected to generate a high diversity of species and strains. Based on previous

data from these types of products [1], we had estimated that MC5 would contain between

150and 200 different species. However, it appeared that the 16S rDNA-based analysis underes-

timated the richness of this bacterial assemblage, particularly in light of the results obtained for

MC1 and MC4. Based on these initial results, the gyrBmarker seemed to be more sensitive

than 16S for the purpose of estimating bacterial richness. We hypothesized that this result

might be associated with an increased ability of gyrB to detect species-level or intraspecies-

level diversity.

Both gyrB and parE genes are amplified within Firmicutes
In order to assign taxonomic identifications to OTUs obtained with gyrB sequencing, we con-

structed a gyrB database (see Materials& methods section). However, our first attempt at

Table 2. Food and mock sample names and sequencing dataset nomenclature.

Sample type Sample name 16S dataset name gyrB dataset name

Cod fillets CF1 to CF3 e.g. CF1_16S e.g. CF1_GYRB

Salmon fillets SF1 to SF3 e.g. SF1_16S e.g. SF1_GYRB

Ground beef burgers GB1 to GB3 e.g. GB1_16S e.g. GB1_GYRB

Poultry sausages CS1 to CS3 e.g. CS1_16S e.g. CS1_GYRB

Pork sausages PS1 to PS3 e.g. PS1_16S e.g. PS1_GYRB

Mock communities MC1 to MC5 e.g. MC1_16S e.g. MC1_GYRB

https://doi.org/10.1371/journal.pone.0204629.t002
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assignment revealed that 72 OTUs within the whole gyrB dataset were not assigned to any spe-

cies; these OTUs accounted for 19.5% of the total diversity and 35% of the total read in the

dataset. Further investigation revealed that these OTUs demonstrated affinity to sequences of

parE. The parE gene encodes subunit B of topoisomerase IV, an enzyme involved in chromo-

some segregation in bacteria (Interpro accession IPR005740). Because the ParE and GyrB pro-

teins are considered to be paralogs, their respective genes may show significant sequence

similarity. To check whether the confusion between parE/gyrB occurred for all types of taxa,

we analyzed the proportions of gyrB and parE sequences assigned to the fifty most-abundant

genera from our dataset (Fig 2). Within four of the five phyla recovered in all samples—i.e.

Proteobacteria, Bacteroidetes, Actinobacteria, and Fusobacteria—all amplicon sequences were

specifically assigned to gyrB. This result indicated that among these phyla, the parE gene

sequence was sufficiently dissimilar from the gyrB sequence as to not be co-amplified. Instead,

within Firmicutes, both genes were recovered at widely varying rates. We noticed that parE

Fig 1. Rarefaction curves obtained from16S rDNA and gyrB amplicon sequencing of the three repeats for each food sample and the five mock

communities. The x-axis represents the sequencing depth in number of reads while the y-axis represents an estimation of the OTU richness detected.

Samples are presented separately, with each panel representing data from one food type or the mock communities. Rarefaction curves for the MC5

community are specifically indicated on the far-right panel.

https://doi.org/10.1371/journal.pone.0204629.g001

Table 3. Comparison of bacterial richness between 16S rDNA and gyrB amplicon sequencing.

Sample description Number of observed OTUs

(Species richness)

Diversity of genus-level taxa

(Genus richness)

16S gyrB 16S gyrB
Cod fillets (CF) 82 ± 14 117 ± 36 26 ± 06 28± 06

Salmon fillets (SF) 81 ± 06 103 ± 36 23 ± 02 25 ± 01

Ground beef burgers (GB) 65 ± 18 94 ± 06 20 ± 04 19 ± 03

Poultry sausages (CS) 78 ± 04 65 ± 11 15 ± 01 13 ± 01

Pork sausages (PS) 138 ± 06 66 ± 06 40 ± 02 13 ± 02

Mock MC1 (15 species) 59 42 15 15

Mock MC2 (15 species) 77 53 16 15

Mock MC3 (15 species) 56 37 15 14

Mock MC4 (5 species) 65 50 8 5

Mock MC5 (complex community) 110 229 33 40

The whole dataset 331 369 64 51

https://doi.org/10.1371/journal.pone.0204629.t003
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reads were significantly more abundant than gyrB reads among families Leuconostocaceae (60

to 90%) and Carnobacteriaceae (70 to 95%) and in the genus Brochothrix (80%). However,

within these taxa, the exact ratio between reads of gyrB and parE was species-dependent. For

example, within the Lactobacillaceae, approximately 80% of reads assigned to Lactobacillus

Fig 2. Relative abundance of gyrB and parE sequences assigned to the fifty most-abundant genera recovered in the

food samples and mock communities. The limits of the uncertainty intervals correspond to the upper and lower

standard deviation of the average proportion of gyrB reads obtained across the various samples in which each taxon

was detected.

https://doi.org/10.1371/journal.pone.0204629.g002
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algidus represented parE sequences, while the same was true of only ~30% of the reads

assigned to Lactobacillus sakei. Interestingly, with the exception of Clostridium algidicarnis for

which the total number of reads remained below 50 in the whole dataset, the relative abun-

dance of gyrB and parE sequences was relatively stable within each of the twenty Firmicutes
species from one sample to another. Indeed, the standard deviation for these values from all

Firmicutes species varied from 0 to ±13%. It can thus be hypothesized that, for a given species,

the ratio between reads of gyrB and parE across samples is relatively constant. We also noticed

that after chimera filtering none of the filtered OTUs were chimeras between gyrB and parE.

Furthermore, the use of gyrB only induces the formation of 1.2% of chimera (corresponding to

10.6% of the clusters) while 16S rDNA generates 9.5% of chimera (corresponding to 17.9% of

the clusters). Therefore, chimera formation was not a valid explanation for this phenomenon.

We decided to further investigate the reason why amplification of gyrB also recovered parE
genes only from Firmicutes and not from Proteobacteria. To do this, we performed a phyloge-

netic analysis that estimated the distances between gyrB and parE sequences of the species that

were introduced in the mock communities (Fig 3). As we expected, gyrB sequences of different

members of phylum Firmicutes appeared to be more similar to parE sequences from those

same Firmicutes genomes than to gyrB sequences extracted from Proteobacteria genomes. This

result confirms why the parE paralog gene was amplified only within strains belonging to phy-

lum Firmicutes in our experiment.

These results highlight that, within ecosystems containing Firmicutes species, gyrB assign-

ment databases must also take parE sequences into account. Here, both types of OTUs were

included in all further analyses and are referred to collectively as gyrB sequences (in the context

of comparison to 16S rDNA) unless a specific mention of parE sequences is necessary.

Genus-level bacterial diversity in food is comparably described by 16S and

gyrB amplicon analysis

Because the OTUs from both the 16S- and gyrB-based analysis could be accurately assigned to

genus-level taxonomic identifications, we merged all OTU data to this level. We then per-

formed principal coordinates analyses (PCoAs) based on Bray-Curtis distances to statistically

compare the bacterial diversity detected using the two markers within the mock communities

(Fig 4A) and food samples (Fig 4B). Both PCoAs revealed a clustering pattern that was strik-

ingly similar between communities analyzed with gyrB and those analyzed with 16S rDNA. At

the genus level, it thus appeared that gyrB and 16S had captured nearly identical images of the

community composition for all samples.

In the PCoA of the mock communities, it is interesting to note that MC1, MC2, and MC3

are evenly distributed along an axis whose orientation is close to that of the first axis of the

PCoA. Since these samples consisted of the same species (identical richness) mixed in different

proportions, this axis could potentially represent the evenness between Proteobacteria species

and Firmicutes species. Moreover, the second axis of the PCoA also appeared to correspond to

the species richness found in our sample: while MC4—composed of only 5 genera—was

located in the lower part of this axis, MC5—consisting of about 40genera—was found on the

upper part of this axis. This trend was confirmed by the placement of MC2, which contained

15 distinct genera and which was located at an equal distance to both MC4 and MC5.

The PCoA of the mock communities provided a good view of the fidelity of gyrBwith

respect to 16S rDNA in standardized samples. The second PCoA likewise demonstrated that

the two markers yielded similar results, but this time in the naturally occurring bacterial com-

munities of food samples. Furthermore, this statistical analysis confirmed that any potential

bias that may have been introduced due to variations in the prevalence of parE among the gyrB

Deciphering food microbiota with gyrB amplicon sequencing

PLOS ONE | https://doi.org/10.1371/journal.pone.0204629 September 25, 2018 12 / 26

https://doi.org/10.1371/journal.pone.0204629


sequences was heavily outweighed by the structuring influence of food origin: in most cases,

communities recovered from a given food product clustered together on the factorial plane

regardless of the marker used for sequencing. There were, however, differences among samples

of certain food types. For example, while the community composition of all samples of pork or

poultry sausage was generally similar, samples of salmon and cod fillet yielded bacterial com-

munities that were clearly more variable among themselves. Interestingly, the low Bray-Curtis

Fig 3. Unrooted phylogenetic tree constructed with the partial gyrB and parE sequences extracted from the

genomes of bacterial species present in the mock communities. Branch length scale indicates the number of

nucleotide substitutions per site. The tree is divided into three main branches: parE genes from Proteobacteria, gyrB
genes from Proteobacteria, and parE/gyrB genes from Firmicutes. The two sub-branches discriminating between parE
and gyrB genes from Firmicutes are equally distant from the gyrB branch of Proteobacteria.

https://doi.org/10.1371/journal.pone.0204629.g003
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distance between 16S- and gyrB-based pork sausage samples contradicted the results of the rar-

efaction analysis. As Bray-Curtis distance is sensitive to the abundance of shared OTUs, this

difference might have stemmed from the prevalence of OTUs of very low abundance, which

could have increased species richness in the 16S rDNA pork sausage samples compared to

gyrB samples. A closer look at these OTUs revealed that 80% of the OTUs that comprised the

increased richness in the 16S pork sausage samples were assigned to five genera (Lactobacillus,
Leuconostoc, Brochothrix, Pseudomonas, and Acinetobacter) which are in fact the main constit-

uents of the abundant microbiota in these samples. Therefore, we concluded that 16S amplifi-

cation in the pork sausage samples had unexpectedly generated a high degree of artificial

diversity which was not filtered out during our quality control to remove spurious OTUs.

The relative bacterial composition of each sample at both the phylum and genus levels is

shown in Fig 5. As expected, all samples mainly consisted of members of two major phyla: Fir-
micutes and Proteobacteria. Interestingly, when the bacteria were viewed at the phylum level

(Fig 5A), gyrB gene sequencing and 16S rRNA gene sequencing recovered highly comparable

communities in 15 out of the 20 samples. Within these samples, the difference between 16S

and gyrB gene sequencing in the proportion of sequences assigned to Firmicutes was 4.0±2.6%.

A similar difference of 4.3±2.7% was calculated for the Proteobacteria. However, much larger

differences between the two markers were noticed in five samples (CF1, SF1, GB1, MC4, and

MC5). In MC5, this difference was due to the underestimation of sequences assigned to Fuso-
bacteria by gyrB (5% versus 42% for 16S). It should be noted that 16S sequencing detected two

different genera in this phylum: the first was the genus Cetobacterium (16S_cluster_60 and

16S_Cluster_377), which accounted for 2.5% of total bacterial abundance, while the second

was an unknown genus (16S_cluster_41) affiliated with the putative Hados.Sed.Eubac.3 family

Fig 4. Principal coordinates analyses (PCoAs) based on Bray-Curtis distances among communities recovered by16S rRNA and gyrB gene

sequencing of (A) mock communities and (B) food samples. All OTUs within the communities were identified to the level of genus. The first and

second axes of the PCoA performed for MC samples explained a high degree of the influence of OTUs on communities, with respectively 50.8% and

31.3% of the total variance. Similarly, the first and second axes of the PCoA performed on food sample communities explained, respectively, 43.9% and

26.3% of the total variance.

https://doi.org/10.1371/journal.pone.0204629.g004
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(SILVA nomenclature) that has been previously identified in cod fillet [1]. Here, this unknown

genus accounted for 31.2% of the total bacterial abundance in MC5 and a minor abundance of

about 1 to 2.7% in the cod fillet samples (CF1 to CF3). Although Cetobacterium was also

detected with gyrB sequencing (gyrB_cluster_48 and gyrB_cluster_116) at a similar range of

abundance (5.4%) in sample MC5, no OTU was identified for the second genus. Therefore, the

bias was directly connected to the lack of amplification of this unknown genus. For the four

other samples, no specific trend was evident: gyrB sequencing favored Firmicutes over Proteo-
bacteria in CF1, SF1, and MC4, but favored Proteobacteria over Firmicutes in GB1. Further-

more, in MC4 the expected relative abundances of Firmicutes and Proteobacteria were 65%

and 35%, respectively. However, we observed that the relative abundances obtained from the

gyrB-based approach deviated from these expected values nearly as much as those from the

16S-based analysis did (gyrB: 50% Firmicutes, 50% Proteobacteria; 16S: 76% Firmicutes, 24%

Fig 5. Composition plots of relative abundances of OTUs generated by 16S rRNA and gyrB sequencing (A) within Bacteria at the phylum level,

(B) within Firmicutes at genus level, and (C) within Proteobacteria at genus level. Samples from a given food product are presented together

(subpanels within A-C) and the two marker analyses for each sample are presented next to each other. Within each panel, the ratio of each taxon was

estimated from the sum of all taxa (within all phyla, within Firmicutes, or within Proteobacteria, respectively).

https://doi.org/10.1371/journal.pone.0204629.g005
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Proteobacteria). It was thus difficult to interpret biases in these data unless they were linked to

the presence or absence of a specific genus in a given sample.

Within phylum Firmicutes (Fig 5B), the relative abundances of most genera were similar

between the gyrB-and 16S-based approaches. For example, the differences between analyses

were 1±1% for Enterococcus, 3±2% for Weissella, 5±5% for Carnobacterium, and no more than

7±7% for Lactobacillus. Nevertheless, we found that, using gyrB, sequences assigned to Lacto-
coccus were recovered at higher abundances (e.g., +22% in GB2 up to +38% in SF1 and +68%

in GB1) from food samples where this genus was abundant (GB and SF). Instead, this disparity

was not confirmed in mock communities: although Lactococcales gyrB sequences were more

abundant than the corresponding 16S rDNA sequences, the difference was much smaller, 6

±1%. It is probable that the large differences in Lactococcus abundances within GB and SF sam-

ples are related to the fact that the gyrB-based analysis assigned a lower number of reads to Bro-
chothrix and Leuconostoc. Indeed, in CS, PS, and MC samples the average difference between

the two markers in terms of reads assigned to Leuconostoc was 4±3%; instead, in GB1 and

GB3, 16S reads were 4.5–7.0 times more abundant. Similarly, within all samples, the 16S analy-

sis assigned up to 85 times more reads to Brochothrix than the gyrB analysis did. It is mainly

notable within CF (CF2 and CF3), SF (SF2 and SF3) and MC (MC4) samples.

Within the Proteobacteria (Fig 5C), the three PS samples could not be analyzed because too

few sequences were assigned to this phylum by gyrB (18, 9, and 176 sequences for PS1, PS2,

and PS3 respectively). As we found with the Firmicutes, Proteobacteria community composi-

tion was largely similar between both analyses. The average difference across all genera in rela-

tive abundance between 16S and gyrB sequences was 6±9%. However, some differences were

noted in a few individual samples and for certain genera. For instance, in samples such as CF1,

SF3, GB2, and CS3, the number of sequences assigned to Serratia was on average 2.4±0.4 times

higher with 16S than with gyrB. In SF3 and CS3, the relative abundance among genera of Pro-
teobacteria of gyrB sequences assigned to Photobacterium was 41% and 94%, respectively,

while these values dropped to 9% and 61% for the same samples using 16S. In general, we

observed that the discrepancies between the two markers increased for subdominant members

of a population, who, due to their low abundances, may have suffered from a decline in

sequencing quality. Furthermore, we found that some of the slight discrepancies between gyrB
and 16S sequencing in terms of the abundance of genera from the Enterobacterales (such as

were observed in the mock communities) were due to incorrect taxonomic assignment of the

16S OTUs by the pipeline. For instance, 3.4% of 16S reads from sample MC4_16S were

assigned to genus Yersinia in the Enterobacterales; however, from this bacterial family, MC4

contained only Serratia proteamaculans.

Quantification biases between gyrB and 16S rRNA genes are not

significantly different

We next quantified all 13 out of the 16 species that constituted the mock communities in order

to investigate two issues: first, the existence of possible biases in the quantification of some

taxa, and second, the ability of gyrB to yield quantitative estimates of the main bacterial species

in food products that were at least as reliable as those obtained using 16S rDNA. To do this, we

used quantitative PCR to estimate the total bacterial population in CFU.g-1 using a universal

primer set (S1 Table). The total concentration of bacterial cells was then used to convert the

relative read counts of each taxon into extrapolated estimations of the species concentrations

in absolute read counts (see Materials& methods section). The estimated absolute number

of16S reads and gyrB reads were thus compared separately to the qPCR results, which were

expressed in CFU.g-1 at the taxonomic level of phylum as described in Fig 6.
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A linear regression model was constructed for each of the four datasets obtained from food

samples and mock communities (Firmicutes 16S, Firmicutes gyrB, Proteobacteria 16S, and Pro-
teobacteria gyrB). For all tested species, there was no evidence of additional bias in the compar-

ison between qPCR results and gyrB reads with respect to the comparison between qPCR and

16S rDNA. However, some discrepancies in quantification between qPCR and amplicon

sequencing were found for both markers; these inconsistencies appeared to be linked with the

presence of rare species in certain samples, indicating that either qPCR quantification or

amplicon sequencing was more difficult or was subject to inhibitory effects for less-abundant

species. Furthermore, the r2 values of the linear regression models that correlated qPCR results

with either 16S rDNA or gyrB read counts were similar for species in phylum Firmicutes but

significantly higher for gyrB reads for Proteobacteria species. These results thus confirm that

analyses based on this gene are better able to faithfully represent the composition of complex

bacterial communities in food products.

For each species, we estimated the deviation between the number of experimental reads

and the number of theoretical reads calculated by the linear regression model. For 11 out of

the 13 species, the median deviation was inferior to 1.0 log10(Fig 6B), thus confirming that

Fig 6. Comparative analysis of quantification of bacterial species by qPCR versus the estimated absolute number of reads obtained by amplicon

sequencing. (A) Results obtained with 16S rDNA and gyrB amplicon sequencing are shown in the upper plots (in pink and cyan, respectively) with data

separated by phylum: Firmicutes (left) and Proteobacteria (right). (B) Boxplot showing the deviation from the linear regression model of the quantification

obtained with 16S rDNA (pink) or gyrB (dark cyan) for several bacterial species in the food samples. For the purpose of quantification of the 16S rDNA

data, species were merged to genus or broad infra-genus phylogenetic clades because the obtained OTUs could only be assigned to these levels (see main

text on subspecies-level bacterial richness).

https://doi.org/10.1371/journal.pone.0204629.g006
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gyrB can be used alongside 16S to successfully determine the composition (richness and even-

ness) of food microbiota.

For Lactobacillus algidus, amplicons of both genes appeared to overestimate its proportion

within the ecosystem. However, the strong correlation between the performances of both

genes could indicate the possible presence of a quantification bias in the qPCR method(per-

haps a specific inhibition of L. algidus primers), or a possible specificity problem of these prim-

ers(originally designed of strain CMTALT10 GA [33], which might be unrepresentative of the

strains present in the food samples). Instead, gyrB appeared to slightly but systematically

underestimate the abundance of Hafnia alvei and Brochothrix thermosphacta compared to 16S

rDNA.

Accuracy of gyrB/parE-based OTUs in determining subspecies-level

bacterial richness

To investigate the discriminatory power of using gyrB at the subspecies level, we further

focused on the 10 most-abundant phylogenetic clades recovered by 16S rDNA amplicon

sequencing, which comprised~80% of the reads in the 16S dataset. As mentioned in Fig 6, we

refer here to phylogenetic clades because most of the thirteen 16S-based OTUs (named

16S_Cluster_XX, for example) representing these 10 clades could not be assigned a species-

level taxonomic identification. Instead, we defined our OTUs for this analysis as groups of

phylogenetically related species that cluster together at a threshold of 97% identity; these clades

thus represent an intermediate situation between genus and species. To these ten clades, we

added three additional genera (Brochothrix, Weissella, and Acinetobacter) because they had

been included as controls in the mock communities (MC1 to MC4). We then constructed a

heatmap that showed the abundance of these sixteen OTUs assigned through 16S rDNA

amplicon sequencing of the food and mock communities samples (Fig 7A). These phyloge-

netic clades corresponded to 44 gyrB-based OTUs (named, e.g., gyrB_Cluster_XX), for which a

heatmap was also constructed (Fig 7B). To facilitate comparison between these two analyses, a

phylogenetic tree was constructed that included all gyrB-based OTUs along with the gyrB or

parE sequences (extracted from public databases) of the different species and strains identified

in the various samples or used in the mock communities (Fig 8). In general, it appeared that

the gyrB-based approach was able to resolve broad phylogenetic clades to the species-or sub-

species-level with a high degree of accuracy. There were two notable examples of this. First,

using gyrB, the 16S-based clade of Photobacterium phosphoreum was resolved into four species

(P. phosphoreum, P. iliopiscarium, P. kishitanii, and P. aquimaris), which gave us the ability to

detect each of these species in the various samples. For example, P. iliopiscarium was revealed

to be the most prevalent species in the food samples. Interestingly, poultry sausages were con-

taminated with a strain (gyrB_cluster_02) that was phylogenetically distinct than the one

found in salmon fillets (gyrB_cluster_03). Instead, P. phosphoreum (the species itself,

gyrB_cluster_16) was only found in the mock communities (MC1 to MC3) in which it had

been introduced, as a strain isolated from spoiled fish, on purpose. The second example of the

discriminatory power of gyrBwas provided with the broad Lactobacillus sakei clade, which in

the gyrB-based analysis was separated into three species (L. sakei, L. curvatus, and L. fuchuen-
sis). Through this improved resolution, we were able to see that both poultry and pork sausages

were rather contaminated by L. curvatus and not by L. sakei, on the contrary to the results

of16S-based analysis. Likewise, gyrB added additional details to the analysis of L. sakei strains

in mock community MC4 (one-third of abundance for gyrB_cluster_13 corresponding to

strain DSM20017 and two-thirds of abundance for gyrB_cluster_04 corresponding to strains

23K and DSM15831grouped together). Two final examples which strengthen this point come
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from Lactococcus piscium and Lactobacillus algidus. Both of these species was identified at the

species level with 16S-based OTUs, but the analysis of gyrB detected diversity at the subspecies

level, with up to four different gyrB-based OTUs in each species. Of these, only one OTU per

species (gyrB_cluster_11 for L. piscium and gyrB_cluster_22 for L. algidus) specifically matched

the strain that had been added in the mock communities, with the other strains coming from

the various food samples. Instead, the opposite case was found for Brochothrix thermosphacta:

this species had only one corresponding gyrB-based OTU, corroborating earlier reports that

this species has a very limited, almost clonal population structure [63].

Discussion

The aim of the present work was to assess the utility of gyrB amplicon sequencing for analysis

of the bacterial diversity of food microbiota at the subspecies level; specifically, we wanted to

investigate the performance of this marker relative to that of the 16S rDNA V3-V4 region,

Fig 7. Heatmap showing the ability of (A) 16S rDNA and (B) gyrB amplicon analysis to estimate intraspecies population levels. Samples are

ordered from left to right according to the sample type. The scale on the right of the heatmap depicts the color palette associated with the relative

numbers of reads of the various OTUs. OTUs are labeled with their cluster number and the taxonomic assignment at the species level. The gyrB/parE
OTUs associated with the strains used in the mock communities are labeled with (#). Boxes are drawn around the main phylogenetic clades that are

detailed in the text.

https://doi.org/10.1371/journal.pone.0204629.g007
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Fig 8. Unrooted neighbor-joining phylogenetic tree showing the evolutionary relationship between gyrB or parE
sequences from OTUs in the current study and those from the published genomes of sequenced strains. OTUs are

labeled with their cluster numbers; sequences extracted from published genomes are labeled with the strain name

followed by the species name. Strains used in the mock communities are indicated in bold type and tagged with (#).

The tree nodes where OTUs and strain sequences cluster are indicated by an open circle (O). Brackets drawn on the

right of major gyrB/parE clades indicate the identities of the corresponding 16S phylogenetic clades.

https://doi.org/10.1371/journal.pone.0204629.g008
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which is commonly used for this purpose. The impetus for this study arose from the need to

decipher this type of microbiota at a subspecies level.

Several previous studies performed with the gyrB gene showed promising results regarding

the use of this marker for analysis of microbiota diversity. However, these studies had focused

on the microbiota of plant seeds (which is mainly composed of Proteobacteria) or on the Bac-
teroidetes phylum of the human gut microbiota. The potential of gyrB amplicon sequencing for

analyzing the intraspecies diversity of food microbiota thus remained to be assessed.

Our results demonstrate that gyrB sequencing can fulfill this goal. This housekeeping gene

shows around 94 to 95% sequence identity among strains of the same species, a level of varia-

tion that matches the ANI (Average Nucleotide Index) value now commonly used for species-

level estimation [34]. Therefore, binning reads at 97% or 98% identity, as typically occurs in

OTU clustering, offers the possibility to capture intraspecies diversity within the main lineages.

This ability to distinguish among groups of phylogenetically distinct strains (population line-

ages, main clonal complexes, and so forth) has enormous implications for our knowledge of

the bacterial strains and population fluctuations involved in food processes. Furthermore, with

an increase in the number of sequenced strains from food-borne bacteria, gyrB amplicon

sequencing will help to better infer functional profiles of diverse microbiota using predictive

tools such as PICRUST or Tax4Fun.

The relative quantification of species using gyrB did not yield different or even better results

than that obtained with 16S amplicon sequencing, despite the unexpected amplification of the

parE gene from Firmicutes species. Within this phylum, these genes, which encode topoisom-

erases II and IV, are very closely related and are co-amplified in a manner that is strongly spe-

cies-dependent. This phenomenon had not been previously observed because the degenerate

primers from the study of Barret et al. 2012 [21]had only been previously tested in microbiota

exclusively composed of Proteobacteria (in plant seeds). The similarity of gyrB and parE nucle-

otide sequences in Firmicutes, and in particular in the order Lactobacillales, significantly com-

plicates the task of designing better universal primers. One solution could be to design several

sets of primers for each major taxonomic level (phyla or orders), as was performed in the

human microbiome study [24]. Even this approach, though, cannot be guaranteed to prevent

the unwanted amplification of parE from some species (notably, within families Leuconostoca-
ceae and Carnobacteriaceae). We noticed that for the species in which parE reads represented a

significant proportion of recovered amplicons (>50%), relative quantification was slightly

underestimated (around 10%) compared to the absolute quantification measured in CFU.g-1.

Therefore, the quantitative estimates based on gyrB amplicon sequencing were less reliable for

Firmicutes species compared to estimates based on 16S rDNA amplicon sequencing. A further

challenge will be the need to include in a computing pipeline two different databases (gyrB and

parE) for taxonomic assignment.

From our point of view, however, these two caveats are minor problems which are far out-

weighed by the major advantages of gyrB sequencing in improving species-level taxonomic

assignment and in investigating OTU richness at the subspecies level. Here, this improvement

was clearly shown in the analysis of phylogenetic clades that are known to contain several

closely related species and lineages, such as Photobacterium phosphoreum, Serratia proteama-
culans, Pseudomonas fragi, and Lactobacillus sakei. Our comparative analysis also highlighted

how taxonomic assignment based on 16S sequencing yielded erroneous results within some

bacterial orders such as the Enterobacterales. Food microbiota often contain groups of genera

that are closely phylogenetically related, such as Serratia, Hafnia, Yersinia, and Morganella.

Artificial diversity, which is created inherently by the 16S amplification process (PCR,

sequencing, etc.), may generate drift up to 3% of sequence identity. In this particular clade of

Enterobacterales, this degree of variation was sufficient to switch a putative identification from
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one genus to another. Thus, the quantification of Enterobacterales and of Proteobacteria in gen-

eral, was greatly improved with gyrB sequencing.

Another major benefit of gyrB sequencing is the ability to capture OTU richness at the sub-

species level. Our data, in particular those shown in Fig 1, clearly demonstrate how subspecies

diversity can influence the image of richness within a sample in comparison to an analysis that

misses this diversity (i.e. the 16S strategy). In brief, when diversity at the subspecies level is

low, gyrB and16S rDNA sequencing strategies will recover similar OTU richness, but the gap

between these approaches will broaden as the subspecies diversity increases (see, for instance,

mock community MC5). Thus, one clear benefit of gyrB is to improve analyses of beta diversity

by enabling more-accurate discrimination of samples. In particular, analyses based on this

marker would also facilitate comparative studies of the beta diversity of microbiota that con-

tain a limited number of different species but in widely varying abundances. In this point of

view, the sequencing of many strains among spoilage species will facilitate the estimation on

how gyrB-based intra-species diversity could be assessed. In addition, the use of gyrB allows to

get rid of unspecific amplification of mitochondrial or chloroplastic 16S rDNA often detected

at high percentage (up to 80%) in food products of animal origin supplied with spices when

16S V1-V3 region is used [1].

The final point we would like to highlight is the fact that gyrB sequence diversity is most

likely species dependent. Therefore, the ability of gyrB amplicon sequencing to reveal accu-

rately subspecies-level diversity may vary significantly among species. Our work revealed a

clear example of this particular problem: only one gyrB cluster was identified for B. thermo-
sphacta, a species that has been recognized as lacking strong intraspecies diversity [63].Instead,

up to four clusters were identified in L. piscium or P. fragi. An additional complication is that

the bacterial DNA gyrase is the target of some antibiotics [64], and the selective pressure cre-

ated by the long exposure of some pathogenic bacteria to antibiotic treatment has been shown

to induce mutant variants of the gyrB gene. This factor must be taken under consideration if

gyrB amplicon sequencing is to be used, for example, for pathobiome analysis.

Conclusions

In sum, our opinion is that gyrB sequencing would be very valuable in analyses of bacterial

diversity that are specifically directed at deciphering details of population structure at the sub-

species level. This approach would carry notable benefits for the temporally and/or spatially

extensive campaigns that are often carried out on food microbiota, e.g., studies that track and

trace whether particular subspecies lineages are specifically selected or subjected to seasonal

changes within a food production chain or during the shelf life.

However, we believe that 16S rDNA amplicon sequencing should still be incorporated in

these metagenetic analyses as a control (by selecting a subset of samples for instance) in order

to ensure that the gyrB data remain consistent with those of the universally used 16S rDNA.

Therefore, we would not recommend the use of gyrB-based methods to de novo analyze micro-

biota that are completely unknown; indeed, our data showed that some species that are not yet

well characterized (e.g., the unknown genus found in cod fillet) might be missed. Generally

speaking, gyrB sequencing still needs to be tested in many different types of complex micro-

biota and especially in those that contain phyla other than Firmicutes and Proteobacteria.
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