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Massively parallel interrogation of protein fragment
secretability using SECRiFY reveals features
influencing secretory system transit
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While transcriptome- and proteome-wide technologies to assess processes in protein bio-

genesis are now widely available, we still lack global approaches to assay post-ribosomal

biogenesis events, in particular those occurring in the eukaryotic secretory system. We here

develop a method, SECRiFY, to simultaneously assess the secretability of >105 protein

fragments by two yeast species, S. cerevisiae and P. pastoris, using custom fragment libraries,

surface display and a sequencing-based readout. Screening human proteome fragments with

a median size of 50–100 amino acids, we generate datasets that enable datamining into

protein features underlying secretability, revealing a striking role for intrinsic disorder and

chain flexibility. The SECRiFY methodology generates sufficient amounts of annotated data

for advanced machine learning methods to deduce secretability patterns. The finding that

secretability is indeed a learnable feature of protein sequences provides a solid base for

application-focused studies.
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The eukaryotic secretory system processes roughly a quarter
of the proteome1–3, ensuring correct folding, assembly, and
delivery of proteins to the extracellular environment, the

plasma membrane, or membrane-bound organelles4–6. Model
secretory cargos such as yeast carboxypeptidase Y (CPY), α-1
antitrypsin (AAT), transthyretin (TTR), the cystic fibrosis
transmembrane conductance regulator (CFTR), and the vesicular
stomatitis virus G protein (VSVG) have been instrumental in
understanding the function and regulation of many ER- or Golgi-
resident proteins (for instance refs. 7–11); yet, the precise features
that enable or prevent secretory system transit of the thousands of
other secretory proteins remain obscure. For example, it is gen-
erally unknown which chaperones are critical for assisting the
folding of the different types of secretory protein domains, what
sequence or structural features control ER export kinetics, or
what determines glycan modification by Golgi glycosyl-
transferases. Studies that examine a broad range of proteins
passing through the secretory system are integral to under-
standing how multiple processes integrate to produce the full set
of secretory proteins. Unfortunately, most current approaches are
unsuited to study a comprehensive range of protein folds after
entry in the ER. Mass spectrometry (MS)-based proteomics is the
predominant approach for the interrogation of post-translational
events, but despite many technological advances, its breadth and
depth is limited and decreases steeply with sample complexity; in
routine MS setups, generally, less than 70% of all transcribed
mammalian protein-coding genes are detected12,13, and full
protein coverage is rarely achieved.

The secretion of recombinant proteins by heterologous hosts
has long been a popular alternative to cytoplasmic expression
because of the more straightforward purification, even for pro-
teins that are not naturally secreted or located in a membrane.
However, obtaining detectable levels of functional recombinant
protein secreted by a given heterologous host is still too often a
process of trial and error. Predicting the compatibility between
recombinant protein and secretory host, and the engineering of
protein or host toward increased compatibility, require models of
the relationship between the amino acid sequence or structural
determinants and successful protein secretion. Arguably, the
availability of large-scale protein secretion data will help to
demystify which and why proteins fail to pass the secretory
pathway. The screening of parallel constructs or variant libraries
of a protein of interest to increase recombinant protein expres-
sion success rates has gained momentum14–17, but it is often
focused on intracellular expression and more importantly, con-
centrates on just a single target. More comprehensive strategies to
assess heterologous expression across entire proteomes do exist,
but have generally also been limited to intracellular expression in
E. coli, small proteomes, and cumbersome clone-by-clone
strategies18–21. Thus, new methods for measuring secretion in
high throughput are needed.

We here develop an approach to evaluate the secretory
potential (“secretability”) of proteins on a proteome-wide scale.
SECRiFY (secretability screening of recombinant fragments in
yeast) combines yeast surface display screening of protein
libraries and a deep sequencing readout, enabling the systematic
identification of heterologous polypeptides that can pass (or
evade) the secretory quality control checkpoints of the yeast ER,
Golgi, secretory vesicles and plasma membrane, and be secreted.
As a first fundamental question to be addressed using this
methodology, we ask whether, given a particular sequence of a
protein fragment, we could (1) learn what features contribute to
its secretability and (2) generate machine-learned secretability
classifiers. Hence, we fragment the human proteome and screen
these fragments for secretability in two different yeast species,
Saccharomyces cerevisiae and Pichia pastoris (Komagataella

phaffii), generating a large, freely accessible repository of more
than 20,000 experimentally determined yeast-producible human
protein fragments. We use them to train (deep) machine learning
models for secretability prediction, which unveil sequence and
structural determinants of productive secretory system transit,
highlighting the utility of SECRiFY to provide further insight into
the basic mechanisms of secretory processing. More application-
focused implementation of SECRiFY (focusing on fixed-boundary
protein domains or multi-domain fragments) should enable
generating databases of experimentally validated secretable native
protein domain fragments, potentially advancing our under-
standing of their specific secretory processing mechanisms.
Ultimately, this could substantially speed up experimental protein
expression in many fields of study.

Results
Normalized fragment libraries for screening at domain-level
resolution. Multi-domain proteins often fail to express or secrete
in their entirety due to local issues with misfolding of particular
protein areas, translation inhibitory sequences, protease suscept-
ibility, the absence of stabilizing interaction partners or mod-
ifications, or toxicity. The structural, functional and evolutionary
modularity of proteins in domains, however, implies that indi-
vidual expression of certain protein parts, especially domains, can
often nonetheless be achieved. Chopping up difficult proteins into
experimentally tractable fragments has been exploited by struc-
tural biologists for years, both in rational target design as well as
in random library screens for soluble expression22–26. Moreover,
screening of protein domains or fragments can provide valuable
information that is not immediately attainable or obvious from
screens with full-length proteins27. Some domain-focused inter-
actome studies, for example, have allowed immediate delineation
of the minimal interacting regions and the detection of more
interactors without increasing the number of false positives28. We
thus rationalized that screening libraries of domains or domain-
sized polypeptides, rather than full-length proteins, would allow
for a higher resolution measurement of secretability across pro-
teomes, and facilitate the identification of sequence or structural
features contributing to secretion.

Domain boundary prediction, however, is notoriously inaccu-
rate, and even with a reliable estimate, small variations in the
exact N- and C-terminus of the fragment can lead to dramatic
differences in expressability29. Random approaches, on the other
hand, can generate libraries of fragments that encompass most
domains of a proteome by sheer oversampling. We therefore
designed and built directional, randomly fragmented cDNA
libraries covering the human transcriptome with fragments
coding for approx. 50–100 amino acids, which is the median
domain size of human proteins (Fig. 1a, c). Due to the large
dynamic range in abundance of mRNA transcripts in human cells
(differing over 4 orders of magnitude), however, capturing the full
diversity of fragments would require unfeasibly large libraries,
even at 100 bp resolution (Fig. 1b). We, therefore, reduced
fragment abundance differences by relying on the second-order
kinetics of nucleic acid rehybridization after denaturation, and
subsequent digestion with the Kamchatka crab duplex-specific
nuclease (DSN)30,31 (Fig. 1c, d). More abundant DNA species
rehybridize faster and are therefore digested first; as such, even a
single round of normalization substantially reduces abundance
differences between DNA fragments (Fig. 1g). Crucially, this
allowed us to downsize the libraries to a scale that is feasibly
compatible with downstream cDNA library cloning and yeast
transformation efficiencies (+/− 5 × 106–5 × 107).

To ensure directionality, random primers were tagged with a
rare-cutter restriction site (PacI), which is distinct from the SfiI
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site incorporated in the library adapters (Fig. 1c). We initially
observed that the random primer tag sequence is susceptible to
degradation due to endo- and exonuclease activity of the E. coli
DNA polymerase I during second strand synthesis32–35. As a
result, less than 20% of fragment sequences contained a full-
length PacI site, negatively affecting ligation into the surface
display vector (Fig. 1e). Both nuclease-resistant phosphorothioate
bonds and buffer sequences could partially protect the tag from
degradation, and for the final library design, we settled on the
primer where protection efficiency was maximal (Fig. 1e,
gray bar).

Tag composition also affected abundance normalization
efficiencies. In an earlier design with a GC-rich tag, normalization
was less effective (Fig. 1f) than the design with PacI tag (Fig. 1g),
where an ~1000-fold normalization could routinely be obtained.
The tag sequence is present on all sequence fragments, and most
likely, when using a GC-rich tag, rehybridization kinetics (and
therefore degradation) is dominated by the tag rather than by the
sequence of the fragments themselves.

In all, this library construction protocol allows for efficient
capture of protein-coding fragments tiled along eukaryotic
transcriptomes. It is an effective method for normalization of
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tagged random-primed cDNA fragment libraries, and it should
find many applications in areas where the protein-coding potential
of a cell needs to be effectively covered in expression libraries.

SECRiFY as a platform for secretability screening in yeast.
Relying on the sophisticated quality control (QC) machinery of
the eukaryotic secretory system, which ensures efficient degra-
dation of unstable or misfolded proteins before reaching the
plasma membrane, we further reasoned that surface display could
be used as a proxy for productive secretion, as other studies have
suggested19,20,36. As such, once cloned into the surface display
vector and transferred to yeast, library polypeptides are directed
to the secretory system by an N-terminal secretory leader
sequence derived from the yeast α mating factor (MFα1 prepro),
and furthermore on the yeast cell wall via C-terminal fusion to
the GPI-anchoring region of the S. cerevisiae cell wall protein
Sag1 (Fig. 2a, b). Fragments for which the fragment-Sag1 fusion
successfully passes (or escapes) secretory system QC without
proteolytic degradation are recognized through their N- and
C-terminal epitope tags (FLAG and V5, resp.), and are segregated
from the rest using iterations of high-efficiency magnetic- and
fluorescence-activated cell sorting (MACS/FACS) (Fig. 2b, c).
Finally, fragment identification and classification are achieved by
deep sequencing of fragment amplicons from the unsorted and
sorted cell populations. In short, SECRiFY assesses secretability,
i.e. the potential of a polypeptide to transit through the secretory
system of ER, Golgi, vesicles, and PM without degradation, in a
manner that is independent of the original endogenous localiza-
tion of the protein of interest. For the present study, we focus on
the basic principles of secretability. While in practice any protein-
coding mRNA pool is compatible with SECRiFY, considering its
biomedical importance and structural complexity, we here
focused on the human proteome for our screens, as encoded by
the transcriptome of various human cell lines.

We first benchmarked the method by building a 1.96 × 106

clone fragment library of the HEK293T transcriptome and
performed triplicate screens in S. cerevisiae. On average,
1.76% ± 0.12% of library cells displayed a fragment with an intact
N-terminus (FLAG-tag) and intact C-terminus (V5-tag) (Supple-
mentary Fig. 1). Accounting for a 1/9 chance of up- and
downstream in-frame cloning, this means that ~15.8% of in-
frame fragments are detectably displayed and hence, potentially
secretable. After a 32-fold enrichment of these double-positive
cells through a single round of MACS and two subsequent rounds
of FACS (Supplementary Fig. 1), both pre- and post-sort
population were sequenced at a per-base average coverage of
minimally 150 reads. On average, 1.12 × 106 unique fragments/

replicate were detected, covering on average 26.45% ± 0.86% of
the human canonical transcriptome with at least three reads
(Supplementary Tables 1–3). To assess the secretion-predictive
value of the method, we picked random clones from the sorted
population of a single experiment (Supplementary Fig. 2,
Supplementary Table 4) and tested the secretion of their encoded
fragments when not fused to the anchor protein Sag1. The N- or
C-terminal tags of 18/20 (90%) fragments could be reliably
detected on western blot from the growth medium, and for 16/20
(80%) fragments, both tags were recognized (Fig. 1d, Supple-
mentary Table 5). As such, fragments displayed by sorted cells are
indeed “secretable” with a high probability. We further classified
fragments into those that were enriched (also referred to as
secretable) and those that were passively depleted (hence, not
detected as secretable) by sorting, setting a cut-off on the
enrichment factor (E factor ¼ log2 FPTMsorted

FPTMunsorted
) at 1 and −1,

respectively, reflecting a minimal 2-fold increase and decrease
in normalized sequence read counts after sorting. Of 170,226 in-
frame fragments commonly detected in the three experiments,
6.83% were consistently enriched in all three replicates, and
80.21% consistently depleted (Supplementary Table 6, Supple-
mentary Fig. 3). Thus, using this metric, these screens were
reproducible with an 87.03% concordance between replicates.
These final stratified groups of fragments, which were con-
cordantly enriched or depleted, will further be referred to as
secretable and depleted, respectively.

Since we only performed positive selection for secretable
fragments during screening, the depleted fraction contains only
passively depleted fragments, and the negative predictive value is
relatively low (40–73%, Supplementary Fig. 4). In light of this,
interpretation of features affecting secretion must focus on those
that affect secretability, and not non-secretability. However, as
there are ±15 times as many fragments (data points) in this
depleted set, this relatively low negative predictive value still
provides for sufficient signal to allow machine learning methods
to learn (see below).

Although we initially tested our method in the model yeast S.
cerevisiae, in practice, the methylotroph Pichia pastoris (Koma-
gataella phaffii) is an increasingly popular choice of host for
recombinant protein production. Mostly, this has been attributed
to this yeast’s formidable capacity for high-density growth, the
secretion of relatively few endogenous secreted proteins, and the
availability of very tightly repressed and extraordinarily strong
inducible promoters derived from the yeast methanol metabolism
genes37,38. Key to the adaptation of SECRiFY for use in P. pastoris
was the development of a modified protocol for high-efficiency
large-scale P. pastoris transformation, which resulted in an

Fig. 1 Capturing protein domains from transcriptomes with directional, normalized fragment libraries. a Most protein domains are between 50–150
amino acids (AA) long (lower left, Gene3D (v14.0.1) human protein domains, n= 104,734). Fragmentation of mRNA transcripts to 300 bp fragments
should capture a substantial part of the domainome. At a ±100 bp resolution, on average 25 fragments would be sufficient to cover a typical transcript.
b Estimated relationship between library size, at a hypothetical 100 bp resolution, and the probability of sampling any fragment, depending on the efficiency
of fragment abundance normalization. c Fragment libraries are constructed by tagged random priming of fragmented polyA+ RNA, G-tailing, semi-single
stranded adapter ligation, PCR, and duplex-specific nuclease normalization before cloning into the yeast surface display vector. ds= double-stranded.
d Abundant transcripts rehybridize faster than rare ones during kinetically controlled rehybridization after denaturation, and as such, digestion of double-
stranded DNA with duplex-specific nuclease (DSN) can be used to normalize fragment abundance. e Effect of phosphorothioate bonds (blue stars) and
buffer sequences (blue nucleotide sequence) on degradation of the PacI sequence in the tag, as measured by deep sequencing (black bars, upper axis) and
restriction enzyme/ligase-based cloning into the surface display vector (red bars, bottom axis). The design with buffering bases alone (gray box) was the
most effective. Primers are written from 5′ to 3′. CFU= colony-forming units, NGS= next-generation sequencing. f, g Abundance differences of various
gene fragments compared to GAPDH, presented as mean ΔCt ± SEM. All sequence abundances are nearly equalized when using a TA-rich (g), instead of a
GC-rich (f) tag in the random primer, with normalization efficiencies up to a ±1,000-fold (ΔCt of 10) for HPRT1. Two-way ANOVA with Tukey post-hoc, ns:
non-significant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. For f n= 2 biological replicates for No norm and Round 1, n= 3 biological replicates for
Round 2. For g n= 9 biological replicates in all conditions. Exact p-values can be found in the Source data file Table 1.
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improvement in transformation efficiency of 2–3 orders of
magnitude (“Methods” and Supplementary Fig. 5). While we
previously observed a slight bias toward detecting small
fragments in both enriched and depleted classes in our S.
cerevisiae pilot screen, reducing the number of PCR amplification
cycles during library generation for sequencing largely eliminated
this trend, although small skews occurring during both cloning
and sequencing were still observed (Supplementary Fig. 6). For
the P. pastoris screens presented here, we first generated a new
fragment library with slightly larger fragment insert sizes from the
pooled transcriptome of four different human cell lines (SK-N-
SH_RA, GM12878, HepG2, and MCF-7) originating from diverse
human tissues (brain, blood, liver, and breast), selected to
maximize the number of expressed human genes based on
ENCODE transcriptome data39. Our high-efficiency transforma-
tion to P. pastoris generated a library with an estimated diversity
of 9.8 × 106 clones. Averaged over three replicate screens,
4.06% ± 0.68% of cells from this library were FLAG+V5+

(Supplementary Fig. 7), which, accounting for the frequent
presence of multi-copy inserts (Supplementary Fig. 8), suggests
that 12.18% of in-frame fragments are displayed and hence,
potentially secretable. Sequencing the fragments of unsorted cells
and cells sorted after 1 round of MACS and 1 round of FACS, we
detected ±1.5 million unique fragments per replicate, either in the
enriched protein-displaying library, in the non-enriched starting
library, or in both, covering 38.38% ± 2.25% of the human

canonical transcriptome with at least three reads (Supplementary
Tables 7–9). Of the 215,004 in-frame fragments detected in all
three of the replicates, 4.84% were classified as consistently
enriched, and 65.75% as consistently depleted, leading to a 71%
concordance between replicates (Supplementary Table 10, Sup-
plementary Fig. 9).

Overall, these data show that SECRiFY is a reproducible and a
reliable method to estimate the secretability of protein fragments.
This dataset now represents by far the largest resource on
eukaryotic secretability of protein fragments.

Secretable fragments are more flexible and disordered. Just as
cytosolic protein expression is influenced by a variety of DNA,
mRNA, and protein sequence or structural features and their
complex interplays40–43, secretion of polypeptides will depend on
a combination of multiple parameters, some of which are related
to the unique environment and QC machinery of the ER and
beyond. Even already at the simple level of general averaged
parameters over our secretable vs depleted protein fragment
collections, several intriguing observations emerged from
our data.

We first examined whether secretable fragments differed from
depleted ones in their probability to form secondary structures.
To maximize the accuracy of feature prediction, fragments were
filtered for size and exact match to Uniprot proteins, and
condensed to an unambiguous subset of consolidated sequences
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Fig. 2 Screening for secretable protein fragments with the SECRiFY surface display platform. a Surface display as a proxy for secretion. Libraries are
cloned downstream of an inducible promoter (pGal1 for S. cerevisiae, and pAOX1 for P. pastoris), a secretory leader sequence (MFα prepro), and a FLAG tag;
and upstream of a V5 tag and the Sag1 anchor. Productive passage of library polypeptide fragments through the yeast secretory system leads to
incorporation into the yeast cell wall, and displaying clones are identified through antibody-based labeling of the epitope tags. b SECRiFY screening
workflow. Fragment libraries are transformed to yeast. After fragment expression induction, displaying FLAG+V5+ clones are sorted in multiple rounds of
MACS/FACS. Fragments are identified by PCR recovery and deep sequencing of both sorted and unsorted cell pools. c Representative flow cytometry plots
for SECRiFY screening of the human proteome in S. cerevisiae. After 3 rounds of enrichment (MACS/FACS/FACS), the fraction of double-positive
(FLAG+V5+) clones increases roughly 30-fold. d Western blot validation of fragment secretability after SECRiFY screening of the human proteome in S.
cerevisiae. The majority of human protein fragments from sorted yeast cells can be expressed and secreted into the yeast medium in a Sag1-independent
manner. Note that several fragments run as multiple species, likely due to heterogeneous processing and modifications such as O-glycosylation. E. coli
lysate: antibody positive control, WT: S. cerevisiae R1158 medium (neg. control), Htt25Q: medium from S. cerevisiae secreting human Htt25Q (pos. control).
Molecular weight marker units are in kDa. This experiment was performed once. Uncropped blots are provided in the Source data file.
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in order to reduce sequence redundancy (see “Methods”).
Secondary structure prediction of this consolidated subset shows
that secretable fragments most prominently have a lower
propensity to form α-helical structures (p= 2.95 × 10−124,
Mann–Whitney–Wilcoxon test) (Fig. 3a, Supplementary
Fig. 11a). Indeed, when clustering overlapping sequences to
representative fragments and mapping these to solved structures
in PDB (roughly 50% of representative fragments, Supplemen-
tary Fig. 12), secretability similarly inversely correlates with α-
helical content (Fig. 3b, Supplementary Fig. 13a) (p= 2.35
× 10−8, Mann–Whitney–Wilcoxon test). In contrast, differences
in β-sheet content are only minimal (Fig. 3a, b).

Since secretable fragments also tend to more readily form random
coils than depleted fragments, based on secondary structure
predictions (p= 1.99 × 10−197, Mann–Whitney–Wilcoxon test) as
well as PDB mapping (p= 1.24 × 10−4, Mann–Whitney–Wilcoxon
test) (Fig. 3a, b), we further examined how backbone dynamics and
intrinsic disorder relate to secretability. As predicted using
Dynamine44,45, secretable fragments are distinctly more flexible
(p= 5.08 × 10−118, Mann–Whitney–Wilcoxon test) (Fig. 3c, Supple-
mentary Fig. 14a). Disorder calculations on the full secretable vs
depleted sets with RAPID46 also confirmed a higher average intrinsic

disorder content in secretable fragments (p < 2.2 × 10−16,
Mann–Whitney–Wilcoxon test) (Fig. 3d, Supplementary Fig. 15).
In line with this, on average, fragments from both subsets appear
compositionally biased. A larger fraction of secretable fragments has a
higher proportion of negatively charged residues and prolines, and a
tendency toward lower hydrophobicity (Supplementary Fig. 16).
Possibly, this increased disorder in secretable fragments reflects how
unstructured fragment sequences that lack typically exposed
hydrophobic amino acids are missed by ER chaperones and can
subsequently travel downstream. This is particularly striking since
endogenous secretory system proteins in both human and yeast are,
on average, less disordered than the whole proteome, both when
considering overall disorder content (p < 2.2 × 10−16 and
p= 2.46 × 10−5 resp., Fisher exact test) as well as absolute number
of disordered amino acids (p < 2.2 × 10−16 and p= 9.44 × 10−10

resp., Fisher exact test) (Supplementary Tables 11–12), suggesting
evolutionary counterselection.

Increasing the fidelity of the above findings, all feature
enrichment observations were reproduced in the P. pastoris
SECRiFY screens (Supplementary Tables 7–10, Supplementary
Figs. 6–18). In addition, our conclusions remained unchanged
when choosing alternative criteria for defining secretable vs

Fig. 3 Patterns in secretable fragments. a Dynamine predictions of secondary structure propensity in subsets of consolidated enriched (n= 2,005) and
depleted (n= 19,618) fragments in S. cerevisiae. Enriched fragments have a lower helical content (p= 2.95 × 10−124) and a higher random coil
(p= 1.99*10−127) propensity, which is confirmed further by mapping representative fragments to known structures in PDB (α-helix p= 2.35 × 10−8,
random coil p= 1.24 × 10−4). b Beta sheet differences are not as pronounced (p= 1.26 × 10−3 for Dynamine prediction and p= 0.02 for PBD mapping).
Enriched fragments: n= 3,001, depleted fragments: n= 32,434. c Enriched consolidated fragments (n= 2,005) are also predicted to be more dynamic than
depleted ones (n= 19,618) (p= 5.08 × 10−118). d Similarly, the predicted disorder content in the total set of enriched fragments (n= 11,625) is significantly
higher than in depleted fragments (n= 136,531) (p < 2.2 × 10−16). Two-sided Mann–Whitney–Wilcoxon tests in (a–d). *p < 0.05, **p < 0.01, ****p < 0.0001.
e Two overlapping fragments of the human protein EDIL3 differ in secretability outcome. Early folding (EF) propensity predictions suggest that for the
depleted fragment regions E2, T3/E3, and R4 are likely the regions driving folding of the depleted fragment, and lack of these regions in the enriched
fragment result in a change in secretability. Box plots indicate the distribution of the median helix, sheet, or coil propensity of amino acid residues,
summarized per (consolidated) fragment. Whiskers reflect the maximum value or the respective quartile value times 1.5 the interquartile range, whichever
is less. The notch displays a confidence interval based on the median plus/minus 1.57 times the interquartile range divided by the square root of the
number of points. If the notches of two boxes do not overlap, this is strong evidence that their medians differ significantly.
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depleted fragment sets, illustrating the robustness of our
observations.

In silico secretability prediction with machine learning. Our
SECRiFY method generates secretability data at a scale at which
training of predictive machine learning classifiers becomes fea-
sible. To study the presence of discriminatory features in the
dataset, we explored two distinct approaches: one based on fea-
ture engineering together with gradient boosted decision tree
modeling47, and a deep learning approach based on convolutional
neural networks (CNNs)48.

The gradient boosting classifier requires a fixed input size.
Therefore, a series of manually engineered input features were
proposed, based on physicochemical properties, sequence length,
and amino acid frequencies. Ten individual classifiers were
trained using different properties, and an ensemble of those was
constructed using another gradient boosted classifier taking the
outputs of the individual classifiers as input. The deep learning
approach involved a CNN taking a one-hot encoding as input,
followed by three blocks of convolutional, max pooling, and
dropout layers. We explored different strategies to deal with the
variable input size, as this is not supported by standard CNN
architectures. A global max pooling layer yielded the best overall
results. This layer is finally connected to a dense layer, followed
by an output layer with a softmax.

Fragments shorter than 50 amino acids were removed from
both the S. cerevisiae and P. pastoris datasets, as those are likely
not long enough to properly fold, which mitigates their relevance.
Using a restrictive 10-fold cross-validation scheme, where we
made sure that protein fragments originating from the same gene
were included in the same fold, we compared the classifiers based
on the area under the receiver operating characteristic curve
(AUROC). Gradient boosting achieved an AUROC of 0.781 and
0.772 on the S. cerevisiae and P. pastoris datasets, respectively,
whereas the CNNs achieved AUROCs of the same magnitude,
0.779 and 0.768 (Fig. 4a). Classification results of both classifiers
thus confirmed the presence of distinctive features within both
secretable and depleted subsets of the data. We observed a strong
correlation between the predicted values for the two approaches,
with Pearson correlation coefficients of 0.810 and 0.887 on the
respective datasets (Fig. 4b), which suggests that the two models
learned to use similar distinctive features in the data.

Feature importance analysis using attribution methods led to
compelling insights in the decisions of the CNN (Fig. 4c, d).
Aggregation of individual attribution maps on the amino acid
residue level indicated that the influence of individual residues on
secretability is largely independent of their position in the
sequence. Strikingly, there is a positive bias toward smaller
residues, in line with our biophysical predictions that random
coils are more readily formed in secretable fragments. Negatively
charged residues also seemed to substantially contribute to
secretability, confirming the pattern we picked up looking at
simple averaged parameters across the full dataset. Similarly, a
negative bias was observed toward all hydrophobic amino acids,
affirming our earlier observations.

We further confirmed the generalizability of our prediction
models by testing their performance on an independent dataset
made up of fragments that were consistently enriched or depleted
in solely two replicates instead of three (Supplementary Tables 15,
19). These fragments were originally excluded to maximize
secretability confidence, either because they did not meet the
2-fold change threshold (set A), or because the direction of
change (enriched or depleted) opposed that of the others (set B),
in one of the three replicates. We now trained the gradient
boosting models and CNNs on the original full dataset

(previously used for cross-validation), and evaluated on the
independent data. The AUROC on set A (Sc_2consistent_1un-
certain and Pp_2consistent_1uncertain) was only slightly lower
than in the cross-validation, with a value of up to 0.750
(compared to 0.781 in the cross-validation) for S. cerevisiae and
up to 0.770 (compared to 0.772 in the cross-validation) for P.
pastoris. At the same time, predictions on set B (Sc_2consis-
tent_1opposite and Pp_2consistent_1opposite) were shown to be
less accurate, with an AUROC of up to 0.612 and 0.640,
respectively. This drop in prediction accuracy is in accordance
with data quality differences between both sets, as an opposite
observation in the third replicate (as in set B) undermines the
credibility of the label that was assigned based on the two
consistent replicates. The data with a third replicate between the
classification thresholds (set A) does not seem to suffer from this.
In summary, these findings substantiate the value of requiring
consistently enriched or depleted fragments across experiments
for machine learning, and reaffirm the validity of our machine
learning models.

Secretable fragments are predicted to be enriched in certain
folds and domains. Although the results above indicate that
secretable fragments are enriched for flexible or disordered
chains, features that are known to affect folding in the ER con-
ceivably could influence the secretability of those fragments that
do fold. We first hypothesized that increased presence of
N-glycosylation sequons or an uneven number of cysteines could
favor ER retention of fragments, but we did not observe clear
differences in number of Cys or N-glycosylation sequons in our
datasets (Supplementary Fig. 16f, g). Furthermore, secreted and
depleted fragments did not substantially differ in their predicted
propensity to collapse into folded structure (EFoldMine49 pre-
diction, Supplementary Fig. 14b). Nonetheless, in select cases
where depleted and enriched fragments overlap in sequence on
the same protein, the presence or absence of regions that are most
likely to fold rapidly often correlated with secretability (Fig. 3e).

Intriguingly, and despite the absence of global differences in
predicted folding propensity, we did notice clear differences in
predicted protein folds and domain architectures represented in
both fragment groups. Of those fragments that mapped to known
structures in PDB, secretable fragments are enriched in distorted
sandwich and β complex folds compared to depleted fragments,
suggesting that these folds are potentially more stable in the
secretory environment, while the opposite is true for proteins
with, for example, an α horseshoe architecture (Supplementary
Table 13, Figshare links to data in “Methods”). Similarly, certain
Pfam domains, such as the AAA18-domain (PF13238), are more
prominent in enriched fragments than depleted fragments, while
many typically cytoplasmic domains such as ribosomal protein
domains or the tetratricopeptide repeat (TPR, PF13181) are
found exclusively in depleted fragments (Figshare links to data in
“Methods”, see also Supplementary Fig. 18). This illustrates that
sequence- and fold-contextual patterns of features still contain
much information that is not apparent from averaged parameters.

Protein secretability does not correlate with endogenous
secretion. Most patterns found to be enriched in secretable
fragments are not recapitulated in endogenous secretory proteins.
We, therefore, further evaluated whether the human proteins
from which secretable fragments were derived, were enriched in
secretory proteins. Since many proteins produced both secretable
and depleted fragments in our screens, we considered only those
proteins for which no depleted fragments were found. In both S.
cerevisiae and P. pastoris screens, the proportion of secretory
proteins (i.e., with a signal peptide in the endogenous setting) in
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this set was not significantly higher than the fraction of secretory
proteins in the human proteome (Fisher’s one-sided exact test,
p= 0.9183 (S. cerevisiae) and p= 0.421 (P. pastoris), Table 1).
This disconnect between highly secretable fragments and endo-
genous secretory proteins likely reflects how features that deter-
mine the highest efficiency passage through the secretory system
are not the most important components of evolutionary selective
pressure for secretory proteins.

Discussion
Despite the tremendous strides made in the field of recombinant
protein production, heterologous secretion remains unpredict-
able. A deeper understanding of the intricate ways in which dif-
ferent processes integrate to produce the full set of secretory
system proteins, heterologous or not, is only slowly emerging.
Although the study of model secretory proteins has led to sub-
stantial progress in the field, a more global approach is needed to
gain a more profound and comprehensive characterization of the
factors that influence secretion.

Our SECRiFY method assesses the secretability of proteins on a
proteome-wide scale and at domain-sized resolution by yeast. To
this end, inspired by developments in the field of massive parallel

sequencing library construction and random approaches to pro-
tein engineering, we first developed a streamlined method for the
construction of a directionally cloned, normalized, and random
primed cDNA fragment library. This combination of features
enabled us to screen the human proteome for secretability at an
higher scale and depth compared to the previous studies17,50,51.
By extension, libraries of this type could be valuable alternatives
in other applications where fragment screening is beneficial, such
as high throughput protein–protein interactomics.

In SECRiFY, yeast surface display screening of these libraries is
combined with high-efficiency cell sorting and deep sequencing
to segregate and identify protein fragments that can productively
pass through the yeast secretory system. As such, we demon-
strated that the secretability of protein fragments across entire
proteomes can be verified experimentally in an efficient, sys-
tematic, high-throughput, and reproducible manner. Although
we here used the human proteome as a testcase, our approach is
generic and can be used to screen any eukaryotic, or with minor
adaptations, even prokaryotic proteome. Already, the databases
we have generated in this work constitute by far the largest
resources of such yeast-secretable human protein segments.
Remarkably, using both a gradient boosted method based on
feature engineering, and an end-to-end trainable convolutional
neural network approach, we achieved an AUROC of up to 0.790
for S. cerevisiae and 0.777 for P. pastoris. Practically, this means
that secretable and depleted fragments have properties that allow
for discrimination, even without prior knowledge of their nature.
This unbiased approach confirmed our hypothesis-driven obser-
vations that biophysical features relating to secondary structure
and flexibility affect secretability. Secretability is thus indeed a
learnable feature of protein sequences. Ultimately, an application-
focus implementation of SECRiFY will benefit recombinant
protein expression and de novo protein design.

Fig. 4 Machine learning for secretability prediction. a Evaluation (expressed in AUROC) of the gradient boosting (GB) and convolutional neural network
(CNN, one model randomly selected out of the ten trained models) approaches, as well as an ensemble taking the average predictions of both.
b Correlation between the predicted values of the GB and CNN models. Secretable data samples are shown in red, depleted samples in blue. c Average
contribution of individual residues when occurring in different parts of the sequence. For each sequence in a test set, the contribution toward a positive
prediction (secretable) is calculated for each individual residue. Contributions are then normalized, with absolute values of all contributions in a sequence
adding up to 100 on average.

Table 1 Secretory enrichment of secretable proteins.

With signal
peptide

No signal
peptide

p-value one-sided
Fisher exact test

Human proteome 3,574 16,548 NA
SECRiFY secretable
(S. cerevisiae)

17 109 0.9183

SECRiFY secretable
(P. pastoris)

24 104 0.421

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26720-y

8 NATURE COMMUNICATIONS |         (2021) 12:6414 | https://doi.org/10.1038/s41467-021-26720-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


From a fundamental biology perspective, it is likely that
SECRiFY will provide a means to characterize the substrate scope
of secretory system processes that regulate secretory protein
passage through the eukaryotic secretory system in a proteome-
wide manner. This complements existing methods, such as
ribosome profiling52, which deal with protein biogenesis prior to
passage through the secretory system.

Our screens, and the combined hypothesis-driven and
unbiased data mining of the data, uncovered that secretable
fragments tend to be less α-helical, more flexible, and more
intrinsically disordered than fragments without significant dis-
play. Chaperones responsible for secretory system quality control
are generally poised to recognize mostly exposed hydrophobic
stretches53–55, so conceivably, flexible yet polar and charged
fragments would avoid these interactions and quickly progress
toward cell wall incorporation. Limited proteolysis measurements
also recently confirmed the inverse correlation of in-cell thermal
stability with intrinsic disorder, α-helical secondary structure, and
aspartate content56. Although these measurements involved
proteins in their endogenous context in lysed cells, and lack of
dataset overlap precluded direct comparison of secretability and
thermal denaturation, it would be intriguing to investigate the
relationship between secretability and stability. Even though our
results show a clear correlation between disorder and secret-
ability, for ordered proteins, quality control mechanisms in the
secretory system will generally efficiently remove unfolded or
unstable proteins. Indeed, recent limited proteolysis screens of
known small protein domains present in PDB or Pfam suggest
that structurally defined surface-displayed domains have an
overall high stability score57. This complements our observation
that secretable fragments map more frequently to certain folds or
domains, and less frequently to others. Although their actual
structure remains to be experimentally determined, this hints at a
meaningful role of fold-contextual patterns in secretability.

Fragment detectability effects may also contribute to the
observed enrichment of aspartates and glutamates. Phospho-
mannose proteins of the yeast cell wall, which confer it a net
negative charge, may be repelled by negatively charged displayed
fragments, leading to more efficient antibody staining due to
increased accessibility. Although proline-rich proteins are gen-
erally localized in the nucleus or cytoplasm58, and are associated
with ribosome slowdown59, it is possible that the intrinsic ability
of prolines to ‘lock’ conformations or reduce conformational
freedom enhances secretory protein stability and hence, display
and secretion. Polyproline or pro-rich stretches are also known
motifs for binding to a wide variety of other proteins27,60,61; as
such, the human oxidoreductase ERp57 binds calnexin and cal-
reticulin at their pro-rich motif, and peptidyl-prolyl isomerases
often act in complexes associated with multiple chaperones.
Prolines are also used as gatekeeper residues against
aggregation62, and perhaps by extension, also against degradation
and therefore display.

Secretable fragments are not enriched in secretory proteins.
SECRiFY detects secretion at the fragment level, potentially
causing some features affecting full-length protein secretion to be
missed. Nonetheless, the absence of correlation also underlines
that SECRiFY assesses secretability, i.e., the capacity to be
secreted, rather than actual endogenous cellular localization to the
secretory system. Indeed, just like most proteins are only mar-
ginally stable, endogenous secretory proteins evolved for function,
not secretability.

Arguably, our method also has its limitations. The random
fragmentation and size selection approach does not guarantee
coverage of all possible domains, including the roughly 11%
discontinuous domains found across the human proteome, but
this design nevertheless allowed us to encompass a large fraction

of them. More importantly, in the current SECRiFY setup,
secretability was measured in the sequence context of the α
mating factor prepro sequence at the N-terminus, and the Sag1
cell wall protein at the C-terminus. While results from our and
other labs have indicated that for several single proteins, display
efficiency correlates with relative secretion levels63–67, it cannot
be completely excluded that, at least for certain fragments, both
leader sequence and the ±300 amino acid Sag1 anchor might
differentially influence fragment folding, solubility, or stability. In
E. coli, fusion to large proteins such as SUMO, the T. harzanium
cellulose binding domain (CBD), or to maltose binding protein
(MBP) is an often used strategy to promote “passenger solubili-
zation”, although again, effects vary depending on the
protein68,69. Considering the vectorial nature of translation, a
C-terminal fusion, as is the case in our setup, is nevertheless
generally deemed less perturbing than an N-terminal fusion,
although this is not absolute. Sag1 is also a GPI-anchored protein,
affecting the entry pathway into the ER70–72. Similarly, the prepro
leader sequence, with its multi-step processing and preference for
post-translational translocation73–75, may bias secretability of
certain fragments. It remains to be determined whether similar
patterns will emerge with different secretory leaders, anchors,
promoters, untranslated regions, or growth conditions.

Display also imposes limitations on the dynamic range of the
method, as there is an upper limit to the number of molecules
that the cell wall can accommodate. Generally, this is in the range
of about 104 molecules per cell76,77. Thus, perturbations affecting
secretion efficiency in these higher ranges may be missed.

In all, with SECRiFY, we here show that our fragment sequence
library allowed to obtain proof-of-concept for massively parallel
assessment of passage through the secretory system, providing the
opportunity to learn which features influence secretability, and
what rules sequences must abide by for successful transit through
the yeast secretory system. We anticipate that our method and its
next-generation derivatives will be of great value in both protein
engineering and fundamental studies of the secretory system.

Methods
Plasmid construction. All restriction digests, PCRs, plasmid preparations, and
DNA purifications were performed according to the reagent/kit manufacturer’s
guidelines unless stated otherwise. Transformations to chemically competent E. coli
MC1061 cells were done by heat shock, and cells were plated on LB agar (5 g/l
bacto yeast extract, 10 g/l bacto tryptone, 10 g/l NaCl, 15 g/l agar) with the
appropriate antibiotics unless noted otherwise. When working with plasmids
containing the zeocin resistance cassette, E. coli TOP10 cells were used and plated
on low salt LB (5 g/l bacto yeast extract, 10 g/l bacto tryptone, 5 g/l NaCl, 15 g/l
agar) agar plates containing 50 μg/ml zeocin. After initial restriction digest/colony
PCR/insert sequencing checkups of constructed plasmids, final plasmids were fully
sequenced by the VIB Genetic Sequencing Facility using Sanger sequencing
before use.

The S. cerevisiae surface display plasmid (pSSDSfiIPacI-FLAGV5-Gal1) was
generated by recombination-based assembly of 3 fragments: linearized p415-Gal1-
noLac as vector backbone (GAL1 promoter, CYC1 TT, CEN/ARS, LEU2 marker), a
PCR product of pBluescript-ScCatch (FLAG-ministuffer-V5-Sag1), and a PCR product
of the MFα1 prepro signal from pGal1-MF. PCR products were fused by overlap
extension PCR, and the resulting product was recombined with linearized vector in a
30min RT CloneEZ reaction (GenScript) and transformed to E. coli. To facilitate
subsequent cloning in pSSDSfiIPacI-FLAGV5-Gal1, the small stuffer between FLAG
and V5 was further replaced by a large stuffer fragment via Gibson Assembly,
generating pSSDSfiIPacI-FLAGV5-Gal1-stuffer. For this, pSSDSfiIPacI-FLAGV5-Gal1
was digested with an equimolar amount of a SfiI-site containing oligo (A136) using
restriction enzyme SfiI (NEB) for 50 °C. The reaction was cooled and PacI (NEB) was
added, and digestion was continued at 37 °C for 1 h. Purified vector fragment was
combined with the PCR amplified stuffer fragment for Gibson Assembly. Similarly, an
insertless display vector, in which the Sag1 is preceded by in-frame FLAG and V5 tags,
was also constructed to function as ‘empty display’ control for subsequent flow
cytometry experiments (pSSDSfiIPacI-FLAGV5-Gal1-EV). pSSDSfiIPacI-FLAGV5-
Gal1 was thus digested by BamHI/XhoI (Promega), and purified backbone was
combined with amplified FLAG-V5 in a Gibson Assembly reaction. For Sag1-less
secretable expression, we also constructed a vector similar to pSSD but lacking the Sag1
coding sequence. This plasmid, pSCASfiIPacI-FLAGV5-Gal1, was constructed by PCR,
phosphorylation and blunt relegation. A long stuffer-containing version of this plasmid,
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pSCASfiIPacI-FLAGV5-Gal1-stuffer, was constructed using the same procedure as for
pSSDSfiIPacI-FLAGV5-Gal1-stuffer construction.

The P. pastoris surface display vector pPSDZeoSfiIPacI-FLAGV5-AOX1 was
made by switching up the pPSDSfiIPacI-FLAGV5-AOX1 backbone for the pPICZ
backbone through HindIII and NotI digest (both Promega), purification from gel,
dephosphorylation of the pPICZ backbone, and ligation. Vector pPSDZeoSfiIPacI-
FLAGV5-AOX1-stuffer was furthermore constructed by inserting part of the
sequence for α-galactosidase from pPICZαGalMycHis between FLAG and V5
using SfiI/PacI restriction digest and ligation. An insertless display vector, in
which the Sag1 is preceded by in-frame FLAG and V5 tags, was also constructed to
function as ‘empty display’ control for subsequent flow cytometry experiments
(pPSDZeoSfiIPacI-FLAGV5-AOX1-EV).

Yeast strains. S. cerevisiae strain R1158 (MATa URA3::CMV-tTA his3Δ1 leu2Δ0,
met15Δ0) was obtained from Open Biosystems, frozen as slant in 15% glycerol at
−80 °C, and grown on SD-Ura (0.67% yeast nitrogen base w/o amino acids, with
ammonium sulfate; 2% dextrose; 0.077% CSM-Ura dropout mix; 17 g agar; pH 5.8)
plates unless noted otherwise.

All Pichia pastoris work was performed in strain GS115 (his4)78, grown in YPD
media (10 g/L yeast extract, 20 g/L dextrose, 20 g/L peptone) supplemented with
various concentrations of zeocin and set to various pHs as indicated, and
supplemented with 17 g/L agar for plates. All plates were always freshly cast or kept
in the dark at 4 °C for maximum 1 week.

Human cell lines. HEK293T cells were cultured at 37 °C in Dulbecco’s Modified
Eagle Medium (DMEM) supplemented with 10% (v/v) fetal calf serum, 2 mM
L-glutamine and 110 mg/l sodium pyruvate. All cells were PPLO negative during
cultivation. Cells were routinely split 1/20 with trypsin/EDTA every 3 days or when
reaching max 80% confluency.

The cell lines HEK293T, HepG2, MCF7-AZ, GM12787, and SK-N-SH were
obtained from the VIB IRC cell bank (HepG2, MCF7-AZ, and SK-N-SH) or from the
Coriell Institute (GM12787). All cells were PPLO negative throughout cultivation and
were grown without antibiotics at 37 °C in 5% CO2 humidified incubators. Cells were
split when reaching 70% confluency (HepG2, MCF7-AZ, SK-N-SH_RA) or when
reaching max. 1 million cells/ml (GM12878). HepG2 cells were grown in Dulbecco’s
Modified Eagle Medium (DMEM) supplemented with 10% (v/v) fetal calf serum (FCS),
2 mM L-glutamine, 10mM sodium pyruvate, and 100 μM non-essential amino acids.
MCF7-AZ, G12878 and SK-N-SH_RA cells were grown and propagated according to
the UW ENCODE Cell culture SOPs (http://genome.cse.ucsc.edu/ENCODE/protocols/
cell/human/Stam_15_protocols.pdf). For MCF7-AZ, this was in Eagle’s Minimal
Essential Medium with 10% FCS, 2mM L-glutamine, and 100 μM non-essential amino
acids; splitting with Accutase (Thermo Fisher). For GM12878, this was in RPMI 1640
with 2mM L-glutamine, 15% FCS. For SK-N-SH_RA, undifferentiated SK-N-SH cells
were grown in RPMI 1640 with 2mM L-glutamine, 10% FCS, and 10mM sodium
pyruvate and split with Accutase (Thermo Fisher). Prior to harvesting, cells were treated
for 48 h with medium containing 6 μM all-trans retinoic acid for differentiation to cells
with a neural phenotype.

Human cDNA fragment library construction. Human cell line total RNA was
isolated using the Innuprep RNA MIDI Direct kit (Analytik-Jena) according to the
manufacturer’s instructions, additionally digesting potentially remaining genomic
DNA with DNase (Turbo DNA-free kit, Ambion) for 1 h at 37 °C. RNA integrity
was checked on the Agilent BioAnalyzer; all samples always had a RIN of 9 or
higher. For the library screen in P. pastoris, samples from the HepG2, MCF7-AZ,
GM12878, and SK-N-SH_RA cell lines were pooled in equal amounts. Next, poly-
A+ transcripts were selected with the Oligotex mRNA midi kit (Qiagen) and
precipitated overnight at −20 °C in 100% RNase-free EtOH (3× initial volume)
with RNase-free NaOAc pH 5.2 (0.3 M final) containing RNase-free glycogen
(100 ng/μl final). Poly-A+-selected RNA was recovered by pelleting for 1 h at 4 °C
at 14,000 × g, washing with 70% RNase-free EtOH, and resuspended in RNase-free
water (Ambion). Samples were further depleted of ribosomal RNA with the Ribo-
Zero Gold (human/mouse) magnetic kit (Epicentre) following the manufacturer’s
instructions but using up to 7.5 μg of polyA+ RNA per reaction. Ribodepleted
samples were then purified with the RNeasy MinElute Cleanup kit (Qiagen). The
RNA was furthermore diluted to 37.5 ng/μl in 16 μl reactions, and fragmented with
1.8 μl of Zn2+ fragmentation buffer (100 mM ZnCl2 in 100 mM Tris-HCl pH 7.0)
in a PCR machine with heated lid at 70 °C for 1 min 45 s. These conditions were
optimized to yield fragments with a Poisson-distributed length around 500 bp.
Fragmentation was stopped with 1.8 μl 0.5 M EDTA pH 8.0, and samples were
pooled and purified once more with the RNeasy MinElute Cleanup kit (Qiagen).
RNA quality and size distribution was monitored at each step on a 2100 BioA-
nalyzer using RNA 6000 pico chips (Agilent Technologies).

In subsequent steps, contamination with environmental human genomic DNA
was avoided as much as possible until after the adapter ligation step. Fragmented
RNA was transcribed to double-stranded cDNA using the Maxima H minus
Double-Stranded cDNA synthesis kit (Thermo Fisher Scientific) according to the
manufacturer’s instructions but swapping the first strand random primer for our
nuclease-protected PacI-tagged random primer (primer A196, Supplementary
Table 20). After RNase treatment, the cDNA was purified using RNase-free DNA

cleanup beads (either AMPure XP beads (Agencourt) or CleanPCR beads
(CleanNA), following manufacturer’s instructions) with a 1.6:1 ratio beads:sample
(v/v). The cDNA was G-tailed using Pyrophage 3137 DNA polymerase exo minus
(Lucigen) in a reaction with 0.2 mM dGTP and corresponding Pyrophage
polymerase buffer for 30 min at 70 °C. After DNA cleanup with beads (1.8×
volume), G-tailed cDNA was ligated to the SfiI-adapter (A188_F and A188_R) in
1× Rapid Ligation buffer and 30 U/μl of T4 UltraPure DNA Ligase (Enzymatics),
using 100 pmoles of adapter per 60 μl reaction, for 15 min at room temperature.
Samples were purified twice in DNA cleanup beads (1.6× volume). Before
normalization, samples were PCR amplified using primer A141_F (final 600 nM),
which hybridizes to the adapter, and 1× KAPA HiFi HotStart mix (KAPA
Biosystems) by denaturation for 3 min at 95 °C, and 20 cycles of 98 °C for 20 s,
67 °C for 15 s, 72 °C for 30 s. Samples were purified with DNA cleanup beads (1.6×)
and normalized with the Kamchatka crab duplex specific nuclease (DSN)
(Evrogen) as in Bogdanov et al.31. Briefly, per 4 μl reaction, 200 ng of cDNA is
mixed with DNase-free water and 1× hybridization buffer (4× stock: 200 mM
HEPES pH 7.5 with 2M NaCl), denatured for 2 min at 98 °C, and allowed to
hydridize for 5 h at 68 °C in a PCR machine with heated lid. Avoiding sample
cooling, the cDNA is combined with 5 μl of pre-heated 2× DSN Master buffer
(Evrogen) and equilibrated at 68 °C for 10 min, after which 0.5 μl (1 DSN unit) of
DSN enzyme is added, digestion then proceeds for 25 min at 68 °C. The reaction is
stopped through the addition of 10 μl of preheated 2x EDTA stop solution
(Evrogen), and after a brief incubation for 5 min at 68 °C, the sample is diluted with
20 μl of DNase-free water. The single-stranded sample is then PCR amplified using
10 μl of template per 50 μl reaction with 1x KAPA HiFi HotStart mix and primer
A141_F (final 600 nM) (3 min at 95 °C, and 15 cycles of 98 °C for 20 s, 67 °C for
15 s, 72 °C for 30 s). A second round of normalization is performed after sample
cleanup using beads (1.6×), using the same protocol (hybridization+DSN
digest+ PCR+ bead cleanup) but allowing hybridization for 15 h and overlaying
the hybridization reaction with 10 μl of mineral oil to counter evaporation. cDNA
library size distribution was monitored at each step of the procedure on a 2100
BioAnalyzer using DNA high Sensitivity chips (Agilent Technologies).
Normalization efficiency was controlled by qPCR comparing the levels of a set of
reference genes with various expression levels (GAPDH (B002 primers), RPL13A
(B005), HMBS (B003), HPRT1 (B004), TBP (B009), PIAS1 (B012), STIM1 (B013),
and ALDH4A1 (B014); see primer table) in non-normalized, single-round
normalized, and two-round normalized samples. All samples including controls
were diluted to 5 ng/μl in DNase-free water, with final 10 μl qPCR reactions
containing 2.5 ng DNA, 1× SensiFast SYBR No-ROX qPCR mix (Bioline), 300 nM
forward primer and 300 nM reverse primer. Reactions were run on a LightCycler
480 (Roche) with 3 min denaturation at 95 °C, followed by 45 cycles of 95 °C for
3 s, 65 °C for 30 s (ramp rate 2.5 °C/s), and 75 °C for 1 s. Melting curves were
generated to check the specificity of the reactions.

Human cDNA library cloning and plasmid library preparation. The cDNA
fragment libraries were cloned in the S. cerevisiae pSSDSfiIPacI-FLAGV5-Gal1 and
P. pastoris pPSDZeoSfiIPacI-FLAGV5-AOX1 surface display vector (for the S.
cerevisiae and P. pastoris screens, resp.) using SfiI/PacI restriction digestion and
ligation on a preparative scale. 200 μg of vector was first digested overnight at 50 °C
with SfiI (NEB) in CutSmart buffer (NEB) and an equal molar amount of SfiI-site
containing oligo (A136) according to the manufacturer’s protocol, in 50 μl aliquots.
After cooling to room temperature, PacI (NEB) was added and digestion was
allowed to proceed for 1 h at 37 °C. The backbone band was purified from agarose
gel, and dephosphorylated for 1 h at 37 °C using a thermolabile alkaline phos-
phatase FastAP (Thermo Scientific) that was inactivated at 75 °C for 5 min after
dephosphorylation. The cDNA library was also digested sequentially with SfiI and
PacI, without A136 oligo, and purified with the NucleoSpin kit (or DNA Clean and
Concentrator 500 kit (ZymoResearch) for larger scale purifications) and desalted
using CleanPCR beads. Digested library and dephosphorylated vector were com-
bined in a 20:1 molar ratio for ligation with T4 DNA ligase (Thermo Scientific)
using the provided T4 Ligase buffer (which was aliquoted to avoid multiple freeze-
thaw cycles), aliquoted in 50 μl reactions in a PCR plate, overnight at 16 °C in a
PCR machine with cooled lid. Prior to electroporation, the reactions were pooled,
purified over 1.4H× CleanPCR beads, eluted in purified water (3/8ths the original
ligation reaction volume), and kept on ice until electroporation.

For electroporation, freshly streaked E. coli MC1061 (S. cerevisiae screen) or
TOP10 (P. pastoris screen) cells were grown in 5 ml of liquid LB medium (5 g/l
bacto yeast extract, 10 g/l bacto tryptone, 10 g/l NaCl) at 37 °C for 1 day. The
stationary culture was inoculated the following morning 1/100 in fresh LB in shake
flasks of appropriate size for proper aeration, and grown while shaking at 37 °C
until an OD600 of 0.5 (about 2 h). The culture was chilled on ice for at least 30 min,
pelleted for 15 min at 4000 × g at 4 °C and washed twice with ice-cold sterile water
(first using 1× the original culture volume, then 1/2×), each time pelleting for
15 min at 4000 × g at 4 °C. A last wash was done in 1/50th of the original culture
volume of ice-cold sterile 10% glycerol, to resuspend the now electrocompetent
cells in ice-cold sterile 10% glycerol (600 μl per 200 ml of starting culture).
Electroporation was performed in pre-chilled 96-well electroporation plates (HT-
200 system from BTX), using 40 μl electrocompetent cells with 2.5 μl of purified
ligation reaction per well (mix well), with the Gene Pulser electroporation system
(BioRad) set at 200Ω, a capacitance of 25 μF, a capacitance extension of 125 μF,
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and a voltage of 2.5 kV. Cells were immediately transferred and pooled in SOC
medium (5 g/l bacto yeast extract, 20 g/l bacto tryptone, 0.5 g/l NaCl, 2.5 mM KCl,
10 mM MgCl2, 20 mM dextrose set to pH 7.0) at 1 ml SOC per reaction, and
allowed to recover for 1 h at 37 °C. A serial dilution of these recovered cells was
plated on agar plates with the appropriate antibiotic to assess transformation
efficiency, and the rest of the culture was spread on large agar+ antibiotic
24.5 cm × 24.5 cm bioassay dishes (3–4 ml per dish) using plastic sterile drigalski
spatulas. After 16–24 h growth in a 37 °C incubator, all the colonies were scraped
from the agar and pooled. The pellet was washed with sterile water, and weighed to
assess cell number and the appropriate plasmid extraction scale, as described in the
manual of the plasmid extraction kit used. The plasmid library was then extracted
from the bacterial cells using one or multiple NucleoBond Xtra Midi preps
(Macherey-Nagel) or QIAfilter Plasmid Giga preps (Qiagen) and eluted in Tris-
HCl pH 8.5. The QIAfilter Giga preps give the overall best yield and purity. All
reactions and electroporations were scaled or repeated as necessary.

Library diversity was estimated assuming equally probable variants as described
in Bosley et al.79, which states that the diversity D=Dmax * (1� e�T=Dmax ) with
Dmax being the maximal diversity (given an infinite number of transformants), and
T the number of transformants obtained. Note that this number does not reflect the
probability that a randomly picked fragment is present in the library, nor does it
reflect the completeness of the library, but merely the maximal diversity possible
given a particular number of transformants. In the case of our human cDNA
fragment libraries, we approximate Dmax= 5 × 107 (assuming a normalization
factor of 1024 and based on a 100 bp resolution). Note that Dmax is larger in reality
as fragmentation is random. For the S. cerevisiae screen, we obtained an estimated
2.66 × 106 E. coli transformants (transformation efficiency 1.21 × 105 CFU/μg
vector DNA) collected from 72 large agar dishes after 216 transformation reactions,
and thus calculate a diversity of 2.59 × 106 plasmid clones. For the P. pastoris
screen, we obtained a total of ~1.28 × 107 E. coli transformants (transformation
efficiency on average around 105 CFU/μg vector DNA used in the ligation reaction)
collected from 318 large agar dishes after 1148 transformation reactions, and thus
calculate a diversity of 1.13 × 107 plasmid clones.

S. cerevisiae library generation. The human cDNA-surface display plasmid
library was transformed to S. cerevisiae strain R1158 using the large-scale high-
efficiency LiAc/SS carrier DNA/PEG heat shock method described in the Nature
Protocols paper by Gietz and Schiestl80 (120× scale). A small fraction of cells was
serially diluted, plated and grown on SD-Leu-Ura agar plates at 28 °C for 3 days to
assess transformation efficiency. The rest of the cells were immediately inoculated
1/20 in liquid SD-Leu-Ura medium (6.7% yeast nitrogen base w/o amino acids,
with ammonium sulfate; 2% dextrose; 0.077% CSM-Leu-Ura dropout mix; pH 5.8)
in shake flasks of the appropriate size after heat shock, and transformants were
selected for 48 h at 30 °C while shaking. After selection, a small aliquot of cells was
serially diluted and plated on YPD plates (10 g/l yeast extract, 20 g/l peptone, 20 g/l
dextrose, 17 g/l agar) for colony PCR-based assessment of selection efficiency. The
rest of the library was aliquotted and frozen at −80 °C in 15% glycerol. Trans-
formations were scaled up or repeated as necessary.

For the library used in this screen, we obtained 3.68 × 106 yeast transformants
(the transformation efficiency was 3.06 × 105 CFU/μg plasmid DNA), and with a
Dmax of 2.59 × 106 (the plasmid library diversity), the estimated diversity of this
yeast library is thus 1.96 × 106 clones. As is customary in the field77,81,82, to ensure
recovery of virtually all clones in downstream steps, we always worked with at least
10× as many cells as the estimated library diversity.

P. pastoris optimized transformation procedure. Plasmids or plasmid libraries
were linearized within the AOX1 promoter with MssI (NEB, Ipswich, USA),
checked for complete digestion on agarose gel and purified with CleanPCR beads
(CleanNA). We modified the high-efficiency P. pastoris electroporation protocol as
described in Wu and Letchworth83. Briefly, cells are grown from subcultures to an
OD600 of 1.5, pelleted at room temperature at 1500 × g for 5′, and resuspended in
200 ml of sterile LiAc/DTT solution (100 mM LiAc, 10 mM DTT (from fresh 1 M
stock), 600 mM sorbitol, 10 mM Tris-HCl pH 7.5) per 250 ml culture. The sus-
pension is incubated for 30′ at 28 °C with gentle shaking (100 rpm). Pellets
(1500 × g for 5′ at 4 °C) are subsequently washed 3 times with ice-cold and sterile
1 M sorbitol (37.5 ml per 250 ml starting culture), and kept on ice as much as
possible. The pretreated cells are finally reconstituted in 1M ice-cold sorbitol
(1.875 ml per 250 ml starting culture) and kept on ice until electroporation. For
electroporation, 80 μl of pretreated P. pastoris cells are mixed with 100 ng–1 μg
(range tested during optimization experiments) of desalted, linearized library DNA
(reconstituted in MQ) in an ice-cold 0.2 cm electroporation cuvette or electro-
poration 96-well plate. These mixes are electroporated at 200Ω, a capacitance of
25 μF and capacitance extension of 125 μF, and a voltage of 1.5 kV using the Gene
Pulser electroporation system (BioRad, Hercules, USA), connected to a HT-200
plate handler (BTX, Holliston, USA) for high-throughput electroporations.
Immediately after electroporation, 1 ml of ice-cold YPD pH 8.0 is added and cells
are transferred to appropriate flasks of tubes. The OD600 is measured before and
after a 6 h recovery with incubation at 28 °C while shaking. Cells are subsequently
plated onto fresh YPD pH 8.0 agar plates containing 20 μg/ml of zeocin using glass
beads to ensure uniform dispersion and grown for 3 days at 30 °C. Transformation

efficiencies are calculated based on the number of colony-forming units per μg of
vector DNA, corrected with the factor of growth that occurred during recovery.

P. pastoris library generation. We transformed the linearized large human cDNA-
surface display plasmid library to P. pastoris strain GS115 using the optimized library
transformation procedure described above, in 184 transformations using 96-well format
electroporation cuvettes (BTX) with 1 μg per transformation. A small fraction of cells
was serially diluted after electroporation and recovery, and plated and grown on fresh
YPD pH 8.0 agar plates containing 20 μg/ml zeocin for 2–3 days at 28 °C in order to
assess transformation efficiency. The rest of the cells were inoculated 1/25 in liquid YPD
pH 8.0 with 20 μg/ml zeocin, and grown at 28 °C while shaking for 2 days. In order to
determine the fraction of transformed cells, a serial dilution of the selected culture was
plated on non-selective YPD plates and grown for 2 days at 28 °C for colony PCR. The
rest of the cells was stored at −80 °C in aliquots with 15% sterile glycerol. Corrected for
the 2.74× factor growth occurring during recovery, transformation efficiency was esti-
mated at 1.23 × 105 CFU/μg DNA, thus obtaining 2,28 × 107 transformants and an
estimated maximal diversity of 9.8 × 106 clones.

As for the S. cerevisiae library, we always worked with at least 10× as many cells
as the estimated library diversity.

S. cerevisiae cell sorting. For the first round of sorting, 6.89 × 107 library yeast
cells were resuscitated from frozen aliquots in 10 ml of SRaf-Leu-Ura (6.7% yeast
nitrogen base w/o amino acids, with ammonium sulfate; 2% raffinose; 0.077%
CSM-Leu-Ura dropout mix; pH 5.8) and grown for 24 h at 28 °C while shaking.
The control strain with FLAG-V5-Sag1 was inoculated from plate in 5 ml SRaf-
Leu-Ura and grown under the same conditions. Expression was induced at
OD600=5 in 10 ml (library) or 5 ml (control strain) SRaf/Gal-Leu-Ura (6.7% yeast
nitrogen base w/o amino acids, with ammonium sulfate; 1% raffinose; 1% ultra-
pure galactose; 0.077% CSM-Leu-Ura dropout mix; pH 5.8) for 24 h, again at 28 °C
while shaking. Cell pellets from two 1.5 ml aliquots of induced library culture were
stored at −80 °C for plasmid extraction. The remaining cells were kept on ice or at
4 °C during the entire staining procedure. Cells were first washed 3× in ice-cold
wash buffer (PBS+ 1 mM EDTA, pH 7.2+ 1 Complete Inhibitor EDTA-free tablet
(Roche) per 50 ml buffer, freshly made and filter sterile), each time spinning down
at 4 °C for 3 min at 3000 × g, and stained at OD600= 4 with mouse monoclonal
anti-V5 (1/500, AbD Serotec MCA2892) and/or rabbit polyclonal anti-FLAG (1/
200, Sigma-Aldrich F7425) in ice-cold staining buffer (wash buffer+ 0.5 mg/ml of
Bovine Serum Albumin) on a rotating wheel for 45 min at 4 °C, aliquoted in 2 ml
tubes. Cell aliquots were washed 2× with 2 ml ice-cold staining buffer, and sec-
ondary staining was done with goat anti-mouse AF647-RPE (1/250, Life Tech-
nologies A20990) and/or goat anti-rabbit AF488 (1/500, Life Technologies A11008)
and/or anti-mouse IgG microbeads (50 μl per ml of cells, Miltenyi Biotec 130-048-
401), on a rotating wheel for 45 min at 4 °C in the dark. Cells that underwent
MACS enrichment were washed 2x in MACS buffer (MACS BSA stock solution
(Miltenyi Biotec) 1/20 in autoMACS rinsing solution (Miltenyi Biotec) +1 Com-
plete Inhibitor EDTA-free tablet (Roche) per 50 ml buffer, freshly made and filter
sterile). MACS enrichment was performed according to the manufacturer’s pro-
tocol on a single LS column. After elution, cells were pelleted for 3 min at 3000 × g
at 4 °C, and recovered in 350 μl staining buffer. Cell samples that were not sub-
jected to enrichment were washed 2× with ice-cold staining buffer. All samples
were filtered over 35 μm cell strainer caps before measurement. Flow cytometry
and cell sorting was performed on a MoFlo Legacy sorter (Beckman Coulter)
accompanied by FlowJo v10.1 for data analysis. Fluorophores were excited at
488 nm, and fluorescence was collected through 605 short pass +530/40 band pass
filters (AF488) and/or a 670/30 band pass filter (AF647-RPE). Cells were gated for
a uniform SSC vs FSC single-cell population, and fluorescence quadrant gates were
chosen as such that, after compensation, max. 5% of cells of unstained and single
stained controls appeared above the background. We sorted out roughly 350 000
MACS-enriched FLAG+V5+ cells per screen (>10× library diversity was screened),
adding 9 ml of SD-Leu-Ura+ Pen/Strep (6.7% yeast nitrogen base w/o amino
acids, with ammonium sulfate; 2% dextrose; 0.077% CSM-Leu-Ura dropout mix;
pH 5.8+ 100 U/ml penicillin and 100 μg/ml streptomycin (Thermo Fisher Scien-
tific)) to the collected cells for recovery. Sorted cells were then grown for 3 days at
28 °C while shaking, and frozen at −80 °C in 15% glycerol aliquots.

For the second round of sorting, round 1 sorted cells and control strains were
grown, induced, stained, and sorted as in the first round but omitting MACS pre-
enrichment and choosing a slightly more stringent gate to increase specificity. Cells
were recovered for 4 days, part of the culture was frozen as slants at −80 °C in 15%
glycerol aliquots, and part of it was frozen as pellets for plasmid DNA isolation. A
dilution series of these round 2 sorted cells was plated out on SD-Leu-Ura agar
plates (SD-Leu-Ura+ 1.7% agar) for single clone analysis. Purity of the two-round
sorted cells was verified by growing ±2.5 × 107 cells in 20 ml SRaf-Leu-Ura+ Pen/
Strep (100 U/ml penicillin and 100 μg/ml streptomycin) for 48 h at 28 °C while
shaking, and again inducing expression at OD600= 5 in SRaf/Gal-Leu-Ura+ Pen/
Strep for 24 h at 28 °C while shaking. Cells were stained as described for the first
and second sorting round, data was again collected on the MoFlo Legacy flow
cytometer, and analyzed using FlowJo v10.1. The entire sorting of this yeast library
was independently replicated three times on separate days.
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P. pastoris cell sorting. For the sorting of protein fragment displaying P. pastoris
cells, 2.2 × 108 library yeast cells were resuscitated from frozen aliquots in 100 ml of
buffered complex glycerol medium (BMGY) (10 g/l bacto yeast extract, 20 g/l bacto
peptone, 100 mM potassium phosohate buffer pH 6.0, 1.34% yeast nitrogen base
with ammonium sulfate; 4 × 10−5% biotin, 1% glycerol) and grown for 24 h at
28 °C while shaking. The control “empty vector (EV)” strain with FLAG-V5-Sag1
was inoculated from plate in 5 ml of BMGY and grown under the same conditions.
Expression was induced at OD600= 10 after switching the medium to buffered
complex methanol medium (BMMY) (10 g/l bacto yeast extract, 20 g/l bacto
peptone, 100 mM potassium phosohate buffer pH 6.0, 1.34% yeast nitrogen base
with ammonium sulfate; 4 × 10−5% biotin, 1% methanol), in 25 ml for the libraries
and 5 ml for the control strain. Induction was allowed for 48 h at 28 °C while
shaking, spiking in methanol to 1% every 8−12 h. At this point, a few ml of culture
was subjected to genomic DNA extraction for downstream sequencing using the
MasterPure Yeast DNA purification kit (Epicentre) following the manufacturer’s
instructions. The remaining cells were then stained, keeping samples on ice or at
4 °C during the entire procedure. Cells were first washed 3× in ice-cold wash buffer
(PBS+ 1 mM EDTA, pH 7.2+ 1 Complete Inhibitor EDTA-free tablet (Roche) per
50 ml buffer, freshly made and filter sterile), each time spinning down at 4 °C for
3 min at 1500 × g, and stained at OD600= 2 with mouse monoclonal anti-V5 (1/
500, AbD Serotec MCA2892) and/or rabbit polyclonal anti-FLAG (1/200, Sigma-
Aldrich F7425) in ice-cold staining buffer (wash buffer+ 0.5 mg/ml Bovine Serum
Albumin) on a rotating wheel for 45 min at 4 °C. Cells were washed 2× with ice-
cold staining buffer, and secondary staining was done with goat anti-mouse AF647-
RPE (1/250, Life Technologies A20990) and/or goat anti-rabbit AF488 (1/500, Life
Technologies A11008) and/or anti-mouse IgG MACS microbeads (50 μl per ml
cells, Miltenyi Biotec 130-048-401), on a rotating wheel for 45 min at 4 °C in the
dark. Cells that underwent MACS enrichment were washed 2× in MACS buffer
(MACS BSA stock solution (Miltenyi Biotec) 1/20 in autoMACS rinsing solution
(Miltenyi Biotec) +1 Complete Inhibitor EDTA-free tablet (Roche) per 50 ml
buffer, freshly made and filter sterile). MACS enrichment was performed according
to the manufacturer’s protocol on two LS columns. After elution, cells were pelleted
for 3 min at 1500 × g at 4 °C, and recovered in 2.5 ml of staining buffer. Cell
samples that were not subjected to enrichment were washed 2× with ice-cold
staining buffer. All samples were filtered over 35 μm cell strainer caps before
measurement. Flow cytometry and cell sorting was performed on a MoFlo Legacy
sorter (Beckman Coulter) accompanied by FlowJo v10.1 for data analysis. Fluor-
ophores were excited at 488 nm, and fluorescence was collected through 605 short
pass +530/40 band pass filters (AF488) and/or a 670/30 band pass filter (AF647-
RPE). Cells were gated for a uniform SSC vs FSC single-cell population, and
fluorescence quadrant gates were chosen as such that, after compensation, max. 5%
of cells of unstained and single stained controls appeared above the background.
We sorted out approximately 5 million MACS-enriched FLAG+V5+ cells per
screen (a number of events >10x library diversity was screened in total). Sorted cells
were spun down at 1500 × g for 5 min at 4 °C, and recovered in 20 ml of YPD pH
8.0+ Pen/Strep (100 U/ml penicillin and 100 μg/ml streptomycin (Thermo Fisher
Scientific)). After 12 h, zeocin was added to 20 μg/ml. Sorted cells were grown for
36 h in total at 28 °C while shaking, and frozen at −80 °C in 15% glycerol aliquots.
For genomic DNA isolation, cells were recovered in YPD pH 8.0 with Pen/Strep
and zeocin, and genomic DNA was extracted using the MasterPure Yeast DNA
purification kit. Library sorting was independently replicated 3 times on three
different days.

S. cerevisiae deep sequencing library preparation. Plasmid isolation of sorted
and non-sorted S. cerevisiae yeast libraries was performed as in Whitehead et al.82

using the ZymoPrep Yeast Plasmid Miniprep II kit (Zymo Research). Briefly,
9–20 × 107 pelleted frozen cells were resuspended in 400 μl of Solution I with 50 U
Zymolyase and incubated for 4 h at 37 °C. After a flash freeze in liquid N2 and
thawing at 42 °C, plasmid extraction was continued as described in the manu-
facturer’s protocol, but eluting in 30 μl of 10 mM Tris-HCl pH 8.0. Genomic DNA
was digested with 60 U of exonuclease I (NEB) and 7.5 U lambda exonuclease
(NEB) in lambda exonuclease buffer (NEB) for 90 min at 30 °C, followed by
inactivation for 20 min at 80 °C. Library plasmids were purified from the buffer
using CleanPCR beads (2× reaction volume) (GC Biotech) and eluted in 22 μl
MilliQ water. Next, the human cDNA fragments on the plasmids were recovered
by PCR using two pools of “frameshifting” primers in analogy to Lundberg et al.84,
so as to equalize base distribution at the first sequenced positions in order to take
maximal advantage of the sequencing chip capacity. Pools of equal molar con-
centration were made for A247_Fx and for A247_Rx. PCR reactions were set up
using 20 μl purified plasmid DNA, 300 nM of each primer pool, and 1× KAPA HiFi
HotStart Readymix in a final volume of 50 μl, and run for 3 min at 95 °C, followed
by 25 cycles of 98 °C for 20 s, 61 °C for 15 s, 72 °C for 30 s. Samples were purified
using CleanPCR beads (1.6× reaction volume) and eluted in 40 μl of 0.1× TE buffer
(1 mM Tris-HCl+ 0.1 mM EDTA, pH 8.0). Illumina adapter sequences and bar-
codes were added using the NEBNext Ultra DNA library prep kit for Illumina
(NEB) largely according to the manufacturer’s protocol, except that the samples
were purified using two rounds of 1.6× volume CleanPCR beads after adapter
ligation to remove adapter dimers, and that the final PCR was performed with
custom primers (A237_F and A237_R_bcx, with bcx indicating different barcodes),
desalted Ultramers from IDT) and for 25 cycles. After PCR, the 500–1200 bp

fragments were purified from 2% agarose gel using the Nucleospin gel and PCR
cleanup kit (Macherey-Nagel), specifically solubilizing the agarose blocks overnight
at 4 °C in NT buffer to avoid fragment denaturation and reduce GC-bias. After
elution in NE buffer, samples were purified a second time using CleanPCR beads
(1.6× volume) and finally eluted in 25 μl of 0.1× TE buffer in DNA LoBind tubes
(Eppendorf). Reasoning that the reduced complexity of the sorted fragment pool
would require less depth than that of the unsorted fragments, samples were pooled
in a 2.5/1 molar ratio of unsorted/sorted libraries. Concentrations were determined
using Nanodrop, Qubit, and the KAPA Library Quantification kit for LC480 on an
Lightcycler 480 (Roche) according to the manufacturer’s instructions. Size dis-
tributions were assessed on a 12-capillary Fragment Analyzer (Advanced Analy-
tical) with their High Sensitivity NGS kit (DNF-474, Advanced Analytical), and the
BioAnalyzer (Agilent) with the DNA High Sensitivity kit (Agilent).

P. pastoris deep sequencing library preparation. The cDNA fragments of sorted
and unsorted P. pastoris library were picked up from genomic DNA by PCR
(500 nM A149_F, 500 nM A149_R, 1× KAPA HiFi HotStart master mix, 70 ng
genomic DNA per 20 μl reaction—95 °C for 3 min, followed by 20 cycles of 98 °C
for 20 s, 61 °C for 15 s, 72 °C for 30 s before cooling). PCR fragments between
300–1000 bp in length were isolated from a 2% agarose gel using the NucleoSpin
Gel and PCR cleanup kit (Macherey-Nagel) and CleanPCR beads (CleanNA),
solubilizing the plugs at 4 °C to avoid denaturation of AT-rich fragments, eluting in
30 μl purified water. This pool of fagments was then further subjected to a second
short PCR for the addition of frameshifting bases (500 nM A247_F primer pool,
500 nM A247_R primer pool, 1× KAPA HiFi HotStart master mix, 20 μl DNA per
50 μl reaction—95 °C for 3 min, followed by 5 cycles of 98 °C for 20 s, 61 °C for
15 s, 72 °C for 30 s before cooling) and was purified with CleanPCR beads (1.6:1
ratio beads:reaction volume) and eluted in 45 μl of purified water. Illumina
sequencing library construction was done with the NEBNext Ultra DNA library
prep kit (NEB) largely according to the manufacturer’s protocol, except that the
samples were purified using one rounds of 1.2× volume CleanPCR beads after
adapter ligation to remove adapter dimers, and that the final PCR was performed
with custom primers (A237_F and the barcoded A237_R_bcx, desalted Ultramers
from IDT) and for 7 cycles. This number of PCR cycles was found to be optimal
after a prior optimization experiment in which we followed the PCR reactions in
real time in a qPCR with SYBR Green, to determine the maximal number of cycles
until an amplification plateau is reached. Fragments were purified using CleanPCR
beads (0.7× volume) and finally eluted in 25 μl of 0.1× TE buffer in DNA LoBind
tubes (Eppendorf). To increase sample yields, we did an additional 4-cycle PCR
with primers against the P5 and P7 sequences (500 nM A240_F, 500 nM A240_R,
1× KAPA HiFi HotStart master mix, 2.5 μl DNA per 100 μl reaction—95 °C for
3 min, followed by 4 cycles of 98 °C for 20 s, 63 °C for 15 s, 72 °C for 30 s before
cooling). Fragments were again purified using CleanPCR beads (0.7× volume) and
eluted in 30 μl 0.1× TE buffer in DNA LoBind tubes (Eppendorf). Samples were
pooled in a 4.3/1 molar ratio of unsorted/sorted libraries. Concentrations were
determined using Nanodrop, Qubit, and the KAPA Library Quantification kit for
LC480 on a Lightcycler 480 (Roche) according to the manufacturer’s instructions.
Size distributions were assessed on a 12-capillary Fragment Analyzer (Advanced
Analytical) with their High Sensitivity NGS kit (DNF-474, Advanced Analytical).

Illumina sequencing, read processing, and sequencing data analysis. For each
screen, the pooled sample was paired-end sequenced (2 × 150 bp) on an Illumina
NextSeq 500 mid-throughput or high-throughput (S. cerevisiae or P. pastoris
screen, resp.) chip and demultiplexed using the NextSeq System Suite 2.0.2. Raw
demultiplexed Illumina sequencing data were processed using a combination of
publicly available tools and custom scripts. Raw reads were first trimmed with Trim
Galore! version 0.4.1 (www.bioinformatics.babraham.ac.uk/projects/trim_galore)
to remove Illumina adapter sequences. Next, FLAG/V5 and frameshifting
sequences were trimmed off with Cutadapt version 1.10 (ref. 85), discarding all
untrimmed pairs to only keep correctly cloned cDNA fragments. Quality control of
raw and processed fastq files was performed using FastQC version 0.11.3
(www.bioinformatics.babraham.ac.uk/projects/fastqc). Processed reads were map-
ped to the human transcriptome of known protein-coding genes as downloaded
from Ensembl’s BioMart86 using BBMap v35.40 (sourceforge.net/projects/bbmap).
Count tables were built and analyzed from the properly paired mapped reads using
SAMtools87 v1.2 and v1.3, BEDtools88 v2.24.0 and v2.25.0, EMBOSS89 v6.6.0, R
project 3.3.0 (www.R-project.org) and the R packages plyr (v1.8.6), ggplot2 (v3.3.4),
alakazam (v1.1.0), stringr (v1.4.0), and UpSetR (v1.4.0)90. A summary of the most
important scripts can be found on Figshare (figshare.com/s/5dba6b512-
fa74ef68a40). Fragments were considered detected when fragment count >0 in
either the unsorted sample, or the sorted sample. Enrichment factors (E factors)
were calculated as log2ð FPTMsorted

FPTMunsorted
Þ, with FPTM being our custom Fragment count

Per Ten Million fragments which is defined as the number of read pairs with the
same start and end position per 10 million read pairs. For the concordance cal-
culations, FPTMunsorted was calculated over the merged replicate unsorted samples,
and from the fragments detected in all 3 replicates (sorted sample or merged
unsorted), only the fragments that were in-frame with both the N-and C-term
fusion parts in the surface display construct were considered (as we used random
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priming, there is an expectable 1/9 chance that a cloned fragment is in the same
reading frame with both the N-and C-term fusion parts).

Flow cytometry of randomly picked sorted S. cerevisiae clones. To assess the
correlation between sequencing count and surface display fluorescence signal, 47
two-round sorted S. cerevisiae single clones and the control strain with FLAG-V5-
Sag1 were inoculated in 2 ml of SRaf-Leu-Ura in deep 24-well plates and grown for
24 h at 28 °C while shaking. Cells were pelleted at 4 °C at 3000 × g for 3 min,
supernatans was removed, cells were resuspended in 2 ml SRaf/Gal-Leu-Ura, and
induced for 24 h at 28 °C. Cell staining was performed as done for the library round
2 sorts, without MACS enrichment, but working in 96-well V-bottom Nunc
microwell plates (Thermo Fisher). Cells were finally diluted ¼ in staining buffer,
and measured on an LSR-II HTS flow cytometer (BD). Fluorophores were excited
at 488 nm, and fluorescence was collected through 550 long pass+ 525/50 band
pass filters (AF488), and/or 670 long pass+ 685/35 band pass filters (AF647-RPE).
Compensation, gating and further data analysis were done in FlowJo v10.1.

For identification, the same clones were subjected to a colony PCR targeting the
human cDNA fragment that each clone encodes. For each clone, a single colony
was picked from plate and resuspended in 20 μl of freshly-made 20 mM NaOH and
incubated for 5 min at room temperature (RT). Lysis was stopped by adding 80 μl
of sterile water, and 5 μl was used in a 25 μl PCR reaction with 0.5 U Phusion High
Fidelity polymerase (NEB), 500 nM of forward primer A207_F, 500 nM of reverse
primer A221_R, 1× Phusion HF buffer, and 200 μM dNTPs (Promega). PCR
cycling conditions involved a 98 °C denaturation for 30 sec; 30 cycles of 98 °C for
10 s, 52 °C for 15 s, 72 °C for 45 s; finishing off with 5 min at 72 °C before cooling.
PCR fragments were purified by CleanPCR beads (GC Biotech), Sanger sequenced
from both ends using primers A149_F and A149_R, and obtained sequences were
mapped to the human reference transcriptome sequences using BLAST and
reconstructed from there. NGS fragment counts in background and sorted cell
libraries were obtained by searching the count tables for fragments with the same
gene symbol and amino acid sequence.

Secretion validation via western blot. For the validation of fragment secret-
ability, 20 random single S. cerevisiae clones from the replicate 1 screen sorts were
grown in 2 ml of SD-Leu-Ura, and plasmids were isolated with the ZymoPrep Yeast
Plasmid Miniprep II kit (Zymo Research) according to the manufacturer’s
instructions. For each clone, the encoded cDNA fragments were isolated via PCR
with 300 nM of A262_F and 300 nM of A262_R primers (with homologous
overhangs for downstream cloning in pSCA-stuffer), in a 1× KAPA HiFi PCR
reaction using 4 ng of plasmid DNA per 20 μl reaction. Samples were denatured for
3 min at 95 °C, and cycled 25× at 98 °C for 20 s, 57 °C for 15 s, 72 °C for 20 s, before
cooling. Amplified DNA was extracted from gel and purified. Secretion vector
pSCASfiIPacI-FLAGV5-AOX1-stuffer was digested with SfiI and PacI (both NEB),
and the vector backbone was also isolated from gel and purified. Fragment and
backbone were assembled using Gibson Assembly for 30 min at 50 °C, and
transformed to E. coli. Plasmids were verified by sequencing. These 20 pSCA-
fragment vectors were transformed to yeast using the LiAc/PEG method by Gietz
and Schiestl91, transformed clones were checked by colonyPCR as described above,
but using primers A221_R and A221_F. For secretion induction, these single yeast
clones were first grown in SRaf-Leu-Ura for 48 h at 28 °C while shaking, pelleted,
and induced in SRaf/Gal-Leu-Ura for 24 h at 28 °C. Medium was collected and
frozen at −20 °C until protein extraction.

Secreted proteins were pelleted from the medium by precipitation with DOC
and TCA. Briefly, for each sample, 10% of the sample volume of 5 mg/ml
deoxycholate (DOC) was added, the sample was incubated on ice for 10 min,
13.54 M trichloroacetic acid (TCA) was added at 10% sample volume, the sample
was incubated on ice for 20 min, and the precipitate was pelleted at 4 °C in a
centrifuge at max. speed for 30 min. Supernatans was removed, and the pellet was
washed twice with ice-cold acetone, and once with 70% ethanol, each time pelleting
the sample for 20 min at 14,000 × g at 4 °C. The pellets were dried at 37 °C and
resuspended in 1× phosphate-buffered saline PBS. Total protein concentration was
estimated with the microBCA kit (Pierce) according to the manual’s instructions.
For each sample, 10 μg of protein was additionally PNGase F digested (NEB)
overnight, according to the manufacturer’s protocol. Finally, equal amounts of
protein for each sample were denatured in 1× Laemmli buffer (10% glycerol, 0.1%
DTT, 63 mM Tris-HCl pH 6.8, 2% SDS, 0.0005% bromophenol blue) for 10 min at
98 °C, run on a 15% Tris-Glycine SDS-PAGE gel, and semi-dry blotted for 1 h30 on
PVDF membranes at 75 mA per 45 cm2 blot. Blots were blocked with 3% milk
powder solution for 2 h at RT or 4 °C overnight and stained with polyclonal rabbit
anti-FLAG antibody (1/2000, Sigma, F7425)+ anti-rabbit IgG-Dylight800
antibody (1/15,000, Thermo Scientific, #35571), or mouse anti-V5 monoclonal
antibody (1/3000, AbD Serotec, #MCA1360)+ anti-mouse IgG-Dylight8000 (1/
15,000, Thermo Scientific, #35521). The ladder was the BioRad Precision Plus Dual
Xtra ladder. Blots were imaged with the Li-Cor Odyssey system.

Feature enrichment analysis. Protein and fragment structural disorder prediction
was done using RAPID46. To assess whether secretable fragments were more likely
to be derived from endogenously secreted proteins than by chance, human proteins
and human secretory proteins (ie with signal peptide) were downloaded from

Uniprot (release 2018_11) and intersected with the lists of secretable and depleted
fragments. Only proteins for which no depleted fragments were found were
retained for analysis. For analysis of N-glycan sequons, we evaluated the presence
of the sequon NXS or NXT but not NPS or NPT using custom awk code.

Structural bioinformatics. For the biophysical predictions, sequences were first
filtered for a 100% sequence match to the UniProt protein and a length longer than
30 amino acids. Secondary structure (a-helix, b-sheet, and random coil) and early
folding propensities were predicted as described for EFoldMine92, but only
retaining residues in the full protein sequence that are unambiguously ‘secreted’ or
‘depleted’ across overlapping fragments. From this, contiguous regions of secreted
or depleted residues were assembled into consolidated fragments, onto which the
average of all predictions for that fragment from the original fragment is con-
densed. Backbone dynamics of sequenced fragments were predicted using
Dynamine44,45. Plots were generated in R (www.R-project.org) using custom
Python scripts.

For PDB mapping, protein fragment sequences were first clustered into
representative fragments using the CD-HIT package92 with an identity parameter
of 100%. This clusters all shorter sequences with fully overlapping longer sequences
into a single longer representative fragment. The representative fragments from
each dataset were used as queries to perform a blast against PDB database using
standalone blast (ncbi-blast-2.6.0+). The percentage of secondary structural
elements for each fragment with a PDB hit was calculated from its corresponding
DSSP coordinates. Domain architectures (Pfam and Gene3D) were retrieved using
InterProScan93 (v 5.24-63.0). Frequency of a particular domain in a dataset was
obtained by removing duplicate entries (if a particular domain is present more than
once for a particular fragment) in the dataset.

Statistical hypothesis testing. Comparison of library normalization efficiencies
was done using a two-way ANOVA with Tukey post-hoc test. Screen replicability
was assessed through calculation of Spearman correlation factors for single-
replicate enrichment factors. Hypothesis testing of feature distributions in enriched
vs depleted fragments was carried out using non-parametric two-sided
Mann–Whitney-Wilcoxon tests. For endogenous secretory protein enrichment, we
used a Fisher’s One-Sided Exact test. In case of more than 10 comparisons the
significance of p-values was corrected using Benjamini–Hochberg multiple
hypotheses testing. All analyses were performed using the R programming lan-
guage (www.R-project.org), except for the correlation calculations of flow cyto-
metric median fluorescence intensity vs enrichment factors of single clones, qPCR
normalization efficiency comparisons, and P. pastoris growth, which were calcu-
lated using GraphPad Prism v7 and v9.

Datasets for binary classification. Two machine learning approaches were
explored to investigate to what extent secretable and non-secretable fragments can
be distinguished by primary sequence: a gradient boosted decision tree47 model,
and a convolutional neural network model48. Both approaches were constructed to
perform this binary classification task, and were trained and evaluated on the same
datasets.

The S. cerevisiae and P. pastoris datasets contain 148,156 and 151,761 protein
fragments respectively, of which the (non-)secretability was consistent across the
three replicates of the sorting experiment. In S. cerevisiae a total of 11,625
fragments were found to be consistently secreted (or enriched), and 136,531
fragments were found to be consistently non-secreted (or depleted). For P. pastoris,
10,404 secreted and 141,357 non-secreted fragments were found. Furthermore, we
only retained fragments with a sequence length of at least 50 amino acids in the
dataset, as we consider shorter sequences irrelevant because they do not fold
properly. This resulted in the final dataset properties as shown in Supplementary
Table 14.

Due to the imbalance between positive and negative samples in the dataset, the
performance of the models was evaluated using the area under the curve of the
receiver operating characteristic (AUROC) metric, as it is relatively insensitive to
changes in class distribution. Instead of working with a fixed class probability
threshold, the AUROC takes the ratio of detected enriched fragments (true positive
rate) against the ratio of correctly assigned depleted fragments (false positive rate)
for all possible thresholds. The AUC of this curve determines the performance,
where a value of 1.0 indicates the best achievable performance and random
prediction achieves a value of 0.5. The AUROC can also be seen as the probability
that a randomly sampled enriched fragment has a higher predicted value than a
randomly sampled depleted fragment.

A 10-fold cross-validation (CV) scheme was deployed to calculate the
performance over the full dataset. To avoid bias between training and test data
during this CV, folds were constructed in a way that all fragments originating from
one gene belong to the same fold. If this measure would be disregarded, correct
predictions on test data might be a result of sequence similarity and the model
overfitting on training data, resulting in overly optimistic results. Simultaneously,
folds were constructed to maintain similar class distributions.

The restrictive data selection scheme, requiring consistency over three
replicates, resulted in a multitude of unused fragments. Therefore, in addition to a
cross-validation over the full dataset, extra datasets were composed to further
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validate the prediction models and the multi-replicate setup. For both S. cerevisiae
and P. pastoris, fragments that were consistently enriched or depleted in solely two
of the three replicates were selected, and divided over two separate datasets
depending on whether the third replicate yielded an enrichment between −1 and 1
(“Set A”, Sc_2consistent_1uncertain and Pp_2consistent_1uncertain), or whether it
was opposite to the consistent replicates (“Set B”, Sc_2consistent_1opposite and
Pp_2consistent_1opposite). An overview of the number of fragments extracted
using this selection procedure is shown in Supplementary Table 15. As the
distribution between positively and negatively labeled fragments differs from the
cross-validation data, results were again quantified using the AUROC, with its
insensitivity to class distributions allowing for a comparison between the resulting
scores across datasets.

Gradient boosting. The dataset consists of protein fragments of variable length.
Traditional machine learning techniques typically rely on equal sized feature
vectors and do not support variable input sizes. To overcome this problem, we
extracted feature vectors from primary sequence to ensure a fixed size of the feature
vector.

Multiple physicochemical properties were considered when extracting the
feature vectors. For each property, the data extraction was performed and a
separate model was trained. Amino acid scales were collected for the following
properties: polarity94, hydrophobicity95, average area buried96, buried residues97,
bulkiness98, molar refraction99, recognition factors100, molecular weight,
transmembrane tendency101, and peptide retention time on HPLC102.

For each property, five groups of features are extracted, resulting in a vector of
40 values for each data sample:

–Relative amino acid frequency (20 features, independent of the property).
–Sequence length (1 feature, independent of the property).
–The values of the property for the first six (at the N-terminus) and the last six
(at the C-terminus) amino acids (12 features).

–The average value of the property over the entire sequence (1 feature).
–The average value of that property per region, when dividing each fragment
into six equal-length regions (6 features). Shorter sequences will have shorter
regions.

We then built a gradient boosting classifier that takes these feature sets as input.
One classifier takes the 40 features per protein fragment as input, and produces a
probability for the secretability of that fragment. After training a classifier for each
property, an ensemble model is constructed, taking the ten probabilities of the
individual classifiers as input for a new gradient boosting classifier, which then
produces a final probability.

The hyperparameters for the gradient boosting decision trees were determined
for each fold of the cross-validation individually, using a randomized search. For
this search, the data from the training set in this fold was used. The results for the
gradient boosting classifiers are listed in Supplementary Table 16.

Convolutional neural network. In recent times, deep learning techniques have
been widely adopted in proteomics103–105. Especially convolutional neural net-
works (CNN) have been successfully applied in this context, given their ability to be
trained end-to-end from primary sequence (preventing the need for manual feature
engineering), their ability to learn spatial relations independent of position, and
their intuitive way of encoding sequence motifs in the first convolutional layer.

A potential hindrance of the typical CNN architecture is that it expects a fixed-
size input to produce a fixed-size output. Given the variability of sequence lengths in
the secretability datasets, we explored four strategies to deal with this variation.
After a one-hot encoding and three blocks, each consisting of a convolutional layer,
rectified linear unit (ReLU) activation function, dropout layer and max pooling
layer, the output of the last block is transformed using one of the following methods:

–Global max pooling, being a max pooling operation over the full sequence.
–K-max pooling106, where the K highest activations are kept (in their respective

order) per channel.
–A bidirectional gated recurrent unit (GRU), where the last hidden states of

each direction are concatenated.
As a baseline, we also pad the input sequence with zeros until a fixed length is

reached, and truncate any proteins that go beyond this length. After doing this, no
transformation to a fixed length is necessary anymore. We choose a maximum
length of 200 amino acids, as this covers 99.8% of all considered fragments.

Finally, this fixed-size output is followed by a fully-connected layer, which is
then connected to an output layer with a single neuron. A sigmoid is used to
generate probabilities from the final activation. The final hyperparameters of the
architecture were determined using a grid search, and are given in Supplementary
Table 17. The results for each architecture are given in Supplementary Table 18.

Identifying decisive input features. A challenge for neural networks, and various
other machine learning techniques for that matter, is their lack of inherent inter-
pretability. Attribution methods have been developed to combat this issue. Here,
we use the integrated gradients107 method, which is based on the back propagation
algorithm. The principle of backpropagation-based attribution methods is to first
do a forward pass through the network, generating an output signal, and to then
backpropagate that signal back to the input to see which parts of the input

sequence were responsible for that prediction. This yields a so-called attribution (or
saliency) map, with a positive or negative contribution per amino acid toward the
predicted secretability of the fragment. The magnitude of the contribution indicates
how strongly it directs the network toward secretable (positive contribution) or
non-secretable (negative contribution) prediction. The overall magnitude of con-
tributions scales with the confidence of the model.

For each protein fragment in the test set of a given fold, we calculated the
attribution map for the optimal model (with global max pooling). To investigate
the general behavior of the model, we then aggregated them using two strategies:

–We calculated the average contribution per amino acid, regardless of where in
the sequence it occurred.

–We divided each sequence into twenty regions, and calculated the average
contribution per amino acid per region. This means that the first region contains
the average contribution of amino acids that occurred in the first 5% of their
respective sequences, the second region from 5 to 10%, etc.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Unprocessed fastq files of both screens have been deposited in the Sequence Read
Archive (SRA) under BioProject accession code PRJNA357179. Lists of all detected,
enriched or depleted fragments are available on Figshare (http://figshare.com/s/
82bb61370d7024f6fb09 for S. cerevisiae screens and http://figshare.com/s/
cace104b0ffc5a57811f for P. pastoris screens), as are the lists of Pfam hits for all
representative fragments (http://figshare.com/s/052370ec40154c09fb68), and CATH/
Gene3D hits for those fragments mapping to PDB structures (http://figshare.com/s/
5a8ca88d27168243c9fe). The data has been integrated in a web interface, available at
http://iomics.ugent.be/secrify/search, for easy browsing by biologists interested in
secretability of fragments of particular proteins of interest (Supplementary Fig. 10). These
fragments are visually mapped to the PDB model of the protein’s structure, where such
structure is available. Source data are provided with this paper.

Code availability
Code used and primary analysis of SECRiFY data can for sequencing data processing is
available through Figshare (https://doi.org/10.6084/m9.figshare.5349979). The code to
generate the Pfam hits and PBD mapping can be accessed via Github (https://
github.com/Pathmanaban/SECRiFY_PDB_processing, https://doi.org/10.5281/
zenodo.5542734), as can the code for training, evaluating and visualizing a convolutional
neural network for secretability prediction (https://github.com/jasperzuallaert/SecrifyDL,
https://doi.org/10.5281/zenodo.5541041), as well as the code for the gradient boosted
decision tree modeling (https://github.com/RobbinBouwmeester/SECRiFY_xgb, https://
doi.org/10.5281/zenodo.5541418).
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