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Abstract
Microbial communities in arctic–alpine soils show biogeographic patterns related to elevation, but the effect of fine-scale
heterogeneity and possibly related temperature and soil moisture regimes remains unclear. We collected soil samples from
different micro-topographic positions and elevational levels in two mountain regions of the Scandes, Central Norway.
Microbial community composition was characterized by 16S rRNA gene amplicon sequencing and was dependent on micro-
topography and elevation. Underlying environmental drivers were identified by integration of microbial community data
with a comprehensive set of site-specific long-term recorded temperature and soil moisture data. Partial least square
regression analysis allowed the description of ecological response patterns and the identification of the important
environmental drivers for each taxonomic group. This demonstrated for the first time that taxa responding to elevation were
indeed most strongly defined by temperature, rather than by other environmental factors. Micro-topography affected taxa
were primarily controlled by temperature and soil moisture. In general, 5-year datasets had higher explanatory power than 1-
year datasets, indicating that the microbial community composition is dependent on long-term developments of near-ground
temperature and soil moisture regimes and possesses a certain resilience, which is in agreement with an often observed
delayed response in global warming studies in arctic–alpine regions.

Introduction

Arctic ecosystems are highly sensitive to elevated tem-
peratures and are therefore often considered as models for
global warming response scenarios [1]. The geographic
location and elevation of arctic–alpine systems crucially
affects environmental variables, such as temperature, soil

moisture, solar radiation, and vapor pressure, resulting in
spatial alterations concerning the occurrence of plants
and animals [2, 3]. An effect of elevation was observed in
a couple of microbial studies [4–6], though with different
effects. Some studies reported that the community structure,
but not alpha diversity, is influenced by elevation [5, 7],
while others observed differences also in alpha diversity
[8–11]. In these studies, the observed differences were best
explained by elevation-related changes in soils, e.g. by
altered carbon and nitrogen contents or pH values, but
usually not by temperature. Likewise, a global-scale study
reported that microbial community composition (MCC) is
largely driven by edaphic factors rather than temperature or
other variables, which typically predict plant and animal
diversity [12]. Only a sediment-mesocosm study along an
elevational transect revealed good correlation between
MCC and water temperature so far [13]. Thus, the minor
relevance of temperature for soil microbial communities in
mountain ecosystems remains unexpected.

The apparently minor role of temperature may result
from the fact that the seemingly simple task of selecting
physiologically and ecologically meaningful measures of
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temperature has been proven difficult [14]. Mean annual air
temperatures derived from synoptic weather stations in
combination with grid-based interpolations are often used as
explanatory variables, though they are known to be
decoupled from the near-surface thermal regime [15, 16].
Moreover, it is especially the multifaceted nature of thermal
conditions (including extremes, accumulated heat sums,
length of growing season, etc.) that affects, at least for
plants, different stages in life cycle and phenology [17]. To
approach this multifaceted nature of thermal conditions, the
concept of heat units [18] with growing degree days or
growing degree hours is often used in plant distribution
models [19]. All of these concepts use a certain pre-defined
threshold temperature that is quantified by accumulating the
respective number of days or hours above this chosen
threshold. It can be assumed that different species are
determined by different thermal thresholds. Consequently,
an inductive approach that screens the entire range of
occurring environmental conditions for potential species-
specific thresholds might also be useful in microbial ecol-
ogy to explain variation in MCC and to assess a possible
impact of temperature in mountain ecosystems more
specifically.

Arctic–alpine ecosystems are further characterized by
high micro-topographic heterogeneity, which affects micro-
environmental parameters [20], and therefore likely controls
microbial activity and MCC. Micro-topographic features
provide an explanation for micro-topographic patterns of
arctic–alpine plants and arthropods [2, 20, 21]. They
influence near-ground air and soil temperatures [15, 16, 22],
modulate soil properties such as moisture content, and
affect carbon and nitrogen cycling in arctic–alpine soils, as
suggested by the observation of a micro-site specific pre-
valence of the N-fixation gene nifH [23]. Thus, we expect
microbial communities to show micro-geographical pat-
terns. Literature about such fine-scaled phenomena in MCC
in arctic–alpine soils is scarce and focused mainly on the
influence of vegetation patterns [24–27], or on slope
exposition [10, 28].

In this study, we evaluated how elevation and micro-
topography affect the diversity and biogeography of
microbes in a complex terrain and aimed to identify
underlying environmental drivers. We used long-term
datasets for temporarily highly variable environmental
parameters such as temperature and soil moisture, which
were recorded at each individual sampling site, instead of
using agglomerated variables over whole areas. To relate
amplicon datasets with the extensive environmental
datasets, we used a statistical approach rather unknown in
microbial ecology, partial least square regression (PLSR)
analysis. This allowed us to identify the most relevant
environmental factors and to describe the ecological
response of each microbial taxon.

Material and methods

Sampling sites

Soil samples were obtained from two arctic–alpine moun-
tain regions in Norway after the first severe frost event in
September 2011. The eastern region in Vågå, Oppland (61°
53′ N, 9°15′ E) is characterized by a slightly continental
climate with low annual precipitation, ranging from 325 to
650 mm a−1. The annual mean temperature is −1.2 °C (min.
−29.2 °C, max. 16.7 °C; [20, 29]). The western region near
Geiranger, Møre og Romsdal (62°03′ N, 7°15′ E) has an
oceanic climate with much higher annual precipitation sums
between 1500 and 2000 mm a−1 and a slightly higher mean
temperature of 1.9 °C (min. −23.2 °C, max. 17.2 °C; [20]).
For this study, we chose four elevations above the treeline,
i.e. at 900 m, 1100 m, 1400 m, 1600 m a. s. l. in the Vågå
region, which is comparable to 800 m, 1000 m, 1200 m,
1400 m a. s. l. in the Geiranger region (Fig. 1). The two
lower elevational levels in each region belong to the low-
alpine belt, whereas the two higher levels belong to the
middle-alpine belt [30]. At each elevation, samples were
taken from four micro-topographic positions, i.e. at ridges,
depressions, south-facing, and north-facing slopes. At each
site, the upper soil layer directly below the vegetation was
sampled in triplicates (for one site a replicate is missing),
resulting in 95 samples from 32 sites. Soils were sieved
through a 4-mm sieve and stored at −20 °C. On-site near-
ground soil and air temperature and soil moisture data were
continuously recorded over a period of 5 years (2006–2011)
before sampling. Temperatures were measured 15 cm below
(soil temperature) and 15 cm above the soil surface (near-
ground air temperature). Soil moisture was also measured in
15 cm depth. Soil carbon (C) and nitrogen (N) content, C:N
ratio, pH, and soil texture were determined in the soil
samples taken in September 2011 (see details in supple-
mentary material Table S1).

DNA extraction, PCR amplification, and Illumina
sequencing

DNA was isolated from 0.25 g of soil using the PowerSoil®

DNA Isolation Kit (MoBio Laboratories, Inc., Carlsbad,
CA). Cell lysis was performed with a tissue lyzer (10 min,
30 Hz). DNA was eluted in 100 μL PCR-water. 16S rRNA
genes were amplified in triplicate reactions per sample using
the fivefold diluted DNA extracts and non-barcoded primers
[31]. One microliter of the amplification product was
used in a second PCR with barcoded forward primers
(Table S2). Each PCR assay contained 1× Herculase II
Fusion buffer, 0.25 μM of each primer, 0.25 mM of each
dNTP, 0.8 mg mL−1 BSA, 1 mM MgCl2, 1 U Herculase II
Fusion Polymerase, and 1 μL template. The PCR program
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consisted of 26 cycles in the first PCR and 5 cycles in the
second PCR (initial denaturation: 2 min at 95 °C; cycles:
20 s at 95 °C, 20 s at 52 °C, 20 s at 72 °C; final elongation:
3 min at 72 °C). The triplicate PCR products per sample
were pooled and purified with CleanNA beads (GC-Bio-
tech, Alphen aan den Rijn, Netherlands). The purified
amplicons were quantified using the QuantiFluor® dsDNA
system (Promega, Mannheim, Germany) and combined at
equimolar ratios into two pools. Library preparation and
sequencing on an Illumina HiSeq system was performed by
the Max Planck-Genome-centre Cologne and resulted in 5.4
million 250 bp paired-end raw reads. After assembly and
quality control, 2.8 million reads were used in QIIME [32]
to build a 97% consensus OTU table for diversity and
MCC analyses (for further details about sequence proces-
sing see supplementary material). Raw sequence reads
have been deposited in the European Nucleotide Archive
(PRJEB25202).

Analysis of MCC and diversity

Alpha and beta diversity were assessed based on a rarefied
subset of the 97% OTU table (9132 reads per sample).
Principal coordinates analysis (PCoA) plots and analysis of
similarity (ANOSIM) were calculated based on a weighted
UniFrac distance matrix using tools of QIIME [33, 34].
ANOSIM was performed to test for significant differences
between samples with regard to mountain region, elevation,
and microtopography. Because of the nested experimental
design and the significant effect of elevation (but not

mountain region), we separated the dataset according to
elevation before evaluating differences due to micro-
topography by ANOSIM.

Observed OTUs, Chao1, and Pilou’s Evenness were
calculated in RStudio with the package vegan [35, 36].
Non-parametric Kruskal–Wallis tests were used to identify
significant differences between samples in dependence on
elevation and micro-topography. Mann–Whitney U tests
with Bonferroni–Holm correction were used to further
assess differences between the four micro-topographic
expositions.

STAMP [37] was used to identify taxonomic groups
(TG) responding to elevation or micro-topography. There-
fore, the 97% OTU table was used to set up a TG table
using the summarize_taxa.py command, which summarizes
TGs at the last known phylogenetic level, followed by data
rarefaction. The same dataset was used for PLSR, which
allowed to integrate results from both analyses. Significant
differences in relative abundances of the TGs were proven
by Kruskal–Wallis tests and Scheffé post-hoc tests cor-
rected with a False Discovery Rate calculation after Ben-
jamini–Hochberg.

Analysis of microbial community data in relation to
environmental parameters by PLSR

In addition to data on soil carbon (C) and nitrogen (N)
content, C:N ratio, pH, and texture as potential explanatory
variables for MCC, we used long-term on-site temperature
and soil moisture measurements to calculate different

Fig. 1 Location of sampling
sites and experimental design.
Samples were collected
from two regions (Geiranger
and Vågå), four micro-
topographic positions and four
elevational levels representing
two alpine belts. Both regions
are located above the treeline.
The vegetation is characterized
by dwarf shrubs, graminoids,
lichens, and mosses growing
on siliceous bedrock and
differs strongly due to micro-
topographic features (e.g.
Dahl [71])
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temperature and soil moisture estimates (Table S1). This
includes mean values, minimum and maximum values, the
amplitude, and the sum of hours for which a specific tem-
perature and moisture threshold were exceeded. For tem-
perature, thresholds were set to 0.1 °C intervals from −25 to
+25 °C, and for soil moisture, intervals of 0.01 m³ H2O m−³
soil were used within the range of 0–0.5 m³ H2O m−³ soil.
The sum of hours above these thresholds was calculated
based on 1-year, 2-year and 5-year datasets. This enabled us
to test the relative effect of long-term versus short-term
environmental conditions on MCC.

Overall, this approach resulted in 3000 environmental
variables to be considered (Table S1), leading to the chal-
lenging statistical problem that there are many more vari-
ables (p) than observations (n). Moreover, the explanatory
variables are not independent of each other but correlated,
introducing complex interactions, and redundancies. The n
< p problem makes common multiple regression approaches
inapplicable because the degrees of freedom are equal to
zero. An accepted shortcut to overcome this problem is to
reduce the multidimensionality in the explanatory variables
by multivariate reduction methods, such as principal com-
ponent analysis (PCA). However, the PCA-obtained com-
ponents maximize the covariation among the predictor
variables regardless of the response variable. Thus, this
approach might yield components lacking any ecological
justification and consequently hinders the interpretation of
the results [38]. To overcome these limitations, we used
PLSR, a statistical method that is widely and successfully
used in other scientific disciplines dealing with high-
dimensional data (e.g., bioinformatics, genomics, spectro-
metrics). An introduction into PLSR is given in several
references [39–42], and additional background information
about the usefulness of PLSR for the purpose of this study
is given in the supplementary material. To identify the most
important variables out of the entire set of environmental
variables, we applied different algorithms that are available
for PLSR, as reviewed in Mehmood et al. [43]. These
include Variable Importance in Projection (VIP) [44], which
is likely to be the most popular, as well as the Selectivity
Ratio (SR) [45, 46] and the significance Multivariate Cor-
relation (sMC) approach [47], which were both introduced
more recently.

To relate our set of environmental variables to the rela-
tive abundances of each TG using PLSR, mean relative
abundance values were calculated for each TG from the
three replicate samples per site using the same rarefied TG
table as for STAMP. Variables (both dependent and inde-
pendent) exhibiting near-zero variance were removed prior
to further analyses. To assess the robustness of the PLSR
results, a centered log-ratio transformed (clr) dataset, gen-
erated from the summarized TG table, was used instead of
the rarefied TG table, thus taking into account the

compositional nature of the data by a dedicated normal-
ization procedure [48]. The PLSR was set up as single
response (PLSR1) model (i.e., one model per taxonomic
group) using the SIMPLS algorithm [49], implemented in
the package mdatools [50] for R 3.3.1 [35]. The optimal
number of components in the PLSR model was found using
Wold’s R criterion [51]. We applied SR, VIP, and sMC (for
the latter the function being adapted from the package
plsVarSel [43]) to assess variable importance. For the SR
approach, we defined explanatory variables with a SR of ≥ 2
as trustworthy, meaning that the explained variance by the
variable was twice as high as the residual variance in the
data.

Results

Biogeographic patterns in microbial communities

PCoA and ANOSIM revealed the variation in MCC to be
unaffected by the mountain region (R= 0.08, P ≤ 0.001,
Fig. 2a). In contrast, we observed a significant effect of
elevation (R= 0.31, P ≤ 0.001, Fig. 2b). Likewise, micro-
topography affected the MCC in both elevational belts
significantly (low-alpine belt: R= 0.44, P ≤ 0.001, middle-
alpine belt: R= 0.34, P ≤ 0.001).

The most abundant phyla in the analyzed soils were
Acidobacteria (23.5% ± 5.5) and Proteobacteria (23.3% ±
5.9), followed by Verrucomicrobia (9.8% ± 2.8), Chloroflexi
(7.9% ± 5.5), Planctomycetes (7.5% ± 2.1), and Actino-
bacteria (6.8% ± 3.6; Fig. 3). Lower abundant phyla were
Bacteroidetes, WPS-2 (“Candidatus Eremiobacteraeota”), and
AD3 (“Candidatus Dormibacteraeota”). Within the Proteo-
bacteria, Alpha- and Gammaproteobacteria were the domi-
nant groups (9.4% ± 2.3 and 6.5% ± 3.6, respectively), while
Beta- and Deltaproteobacteria showed abundances between 3
and 4%. In the low-alpine belt, families belonging to the phyla
Actinobacteria, Alphaproteobacteria, Bacteroidetes, as well as
Deltaproteobacteria, and Gammaproteobacteria showed sig-
nificantly higher relative abundances, while members of the
phyla Chloroflexi, Gemmatimonadetes, “Candidatus Dormi-
bacteraeota”, and “Candidatus Eremiobacteraeota” were more
prevalent in the middle-alpine belt (Fig. 3, Table S3). Micro-
topography also influenced MCC significantly, especially in
depressions, where members of Bacteroidetes, Betaproteo-
bacteria, Chlorobi, and Chloroflexi showed higher relative
abundances, whereby an enrichment of freshwater-associated
and (facultative) anaerobic TGs was found, e.g. Holophaga-
ceae, Spirochaetaceae, Geobacteraceae, Myxococcales,
Methylococcales, Comamonadaceae, Rhodocyclaceae, and
Syntrophobacterales (Table S4). In contrast, soils from ridges
harbored more Actinobacteria, Armantimonadetes, and
Planctomycetes. A comparison of the alpha-diversity between
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samples revealed that elevation did not affect richness or
evenness of the communities, while microtopography had a
strong impact on all diversity indices (P < 0.001, Table 1),
with slopes supporting a lower microbial richness and even-
ness than depressions and ridges. The mountain region influ-
enced only Chao1 richness, showing higher values in the
western region.

Relevance of different temperature and moisture
variables for MCC

To identify environmental variables that can explain the
variation in MCC we performed PLSR in combination
with the SR, VIP, and sMC algorithm. Since PLSR ana-
lysis does not perform well for very low abundant taxa
(read abundance ≤ 0.001%), presented results are derived
from 470 TGs, which were obtained from the rarefied TG
dataset upon zero-variance filtering, which precedes the
PLSR procedure. Focusing on SR data, we observed that
most TGs showed the highest SR values for near-ground

air temperature (61%; Fig. 4a), soil temperature (19%), or
soil moisture variables (17.5%), but rarely for other soil
characteristics (2.5%). When taking into account the mean
relative abundance of each taxon across the study sites,
soil moisture was found to be the more important factor
(32%; Fig. 4b), while the relevance of air temperature
(52%) and soil temperature (11%) decreased slightly, i.e.
several of the dominant taxa at the sites were air tem-
perature or soil moisture driven. A clr-transformed TG
table instead of a rarefied dataset as input in combination
with the SR approach gave similar results (Fig. 4). The
use of sMC as an alternative approach to identify the most
important variables resulted in similar findings, i.e. soil
temperature, soil texture, and pH became slightly more
relevant based on this algorithm, but air temperature and
soil moisture remained the predominant factors (Fig. 4).
In contrast, VIP identified soil moisture as the major
driver for 93% of the TGs. Interestingly, soil character-
istics such as pH, carbon and nitrogen content, or soil
texture were seldom found to be the most important factor

Fig. 2 Principal coordinate
analysis (PCoA) of the microbial
community compositional data
based on a weighted UniFrac
distance matrix. Samples were
colored according to a mountain
region, b alpine belt, and
c micro-topography

Fig. 3 Stacked bar charts
presenting the relative
abundance of the predominant
phyla and proteobacterial classes
in samples grouped by eastern
and western region, elevation
according to alpine belt or
micro-topography. Illustrated
are differences in mean relative
abundance and the
corresponding standard
deviation

Temperature and soil moisture control microbial community composition in an arctic–alpine. . . 2035



(2% for the SR algorithm, 10% for sMC; Fig. 4a). Upon
focusing on the type of measure, most microorganisms
showed a better relation to specific temperature or

moisture thresholds than to mean, maximum or minimum
values, or the amplitude, regardless of the algorithm used
for factor identification (SR or sMC; Fig. 4). Furthermore,

Fig. 4 Most important environmental drivers as obtained by partial
least-square regression (PLSR) for each individual taxonomic group
(TG). Relative numbers in the respective categories were obtained by
counting the number of TGs falling into each category (a) or con-
sidering the mean relative abundance of each TG across all samples
(b). Different algorithms were used to identify the most important
environmental driver for each TG: selectivity ratio (SR), variable

importance in projection (VIP), and Significance Multivariate Corre-
lation (sMC). In addition, PLSR was conducted based on a centered
logratio (clr) transformed OTU dataset in combination with SR for
variable selection (SR clr). Specific temperature and moisture thresh-
old values were calculated as sum of hours for which a specific tem-
perature and moisture threshold was exceeded over 1, 2, or 5 years

Table 1 Differences in diversity
indices in dependence on
mountain region, elevational
belt, and micro-topography
calculated by using Kruskal–
Wallis tests

Test parameters Sample grouping Observed Chao Pilou’s evenness

Mountain region East 1686 ± 237 3221 ± 476*** 0.823 ± 0.029

West 1768 ± 229 3543 ± 536 0.829 ± 0.026

Elevational belt Low-alpine 1708 ± 270 3367 ± 553 0.822 ± 0.031

Middle-alpine 1746 ± 195 3395 ± 511 0.829 ± 0.024

Micro-topography*** Ridge 1764 ± 118 3370 ± 252 0.845 ± 0.014

Depression 1906 ± 275 3695 ± 629 0.829 ± 0.036

South slope 1675 ± 217 3372 ± 562 0.817 ± 0.024

North slope 1571 ± 181 3099 ± 456 0.813 ± 0.023

Mann–Whitney U test results for micro-topography

Observed Chao Pilou’s evenness

Ridge Depression n.s. n.s. n.s.

Ridge South slope n.s. n.s. ***

Ridge North slope *** * ***

Depression South slope ** n.s. n.s.

Depression North slope *** ** n.s.

South slope North slope n.s. n.s. n.s.

Significant differences are indicated as *P < 0.05, **P < 0.01, **P < 0.001, n.s. non-significant. Significant
differences between the four individual micro-topographic positions were evaluated using Mann–Whitney U
tests.
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the 2-year and 5-year air temperature datasets were better
related to variations in microbial relative abundance
across sites than the 1-year data.

Responses of individual microbial taxa to
environmental variables

The obtained SR data were used to set up ecological
response graphs, which display the importance of specific
temperature or moisture regimes for a TG and describe the
range in which it has its ecological response (Fig. 5).
Remarkably, more than 84% of all analyzed TGs had at
least one SR ≥ 2, indicating that relevant environmental
variables were identified in most cases. SR profiles showed
for some taxa a broad and for others a narrow ecological
response pattern, suggesting a broad or narrow ecological
niche. Interestingly, soil and air temperature profiles were
often quite similar within a TG, although soil temperature
ranges appeared sharper and less broad than air temperature
thresholds (e.g. Fig. 5a, d and f). TGs with a narrow profile
showed often very high SRs, while broader response pat-
terns resulted in lower SRs (e.g. Fig. 5c versus e). In
comparison to the SR approach, sMC led to very narrow
response profiles, while a clr-transformation of the data
resulted in SR profiles that were largely comparable to those
of the rarefied SR dataset, though the specific shape and the
identified most important factor differed for several TGs
(Fig. S1; Table S4).

TGs dependent on temperature with SR values ≥ 2 were
identified within the Acidobacteria, Actinobacteria, Alpha-
proteobacteria, Bacteriodetes, Firmicutes, Verrucomicrobia,
and Planctomycetes (Table S4). The taxonomic rank at which
TGs responded to temperature differed within the phyla. For
example, responses were observed at order or class level
within the Acidobacteria for Holophagae, Solibacteriales and
the class iii1-8, or within the Actinobacteria for diverse
though not all Actinomycetales (Table S4). The exact
threshold air or soil temperature was specific for each genus.
TGs that were predominantly influenced by soil moisture
were also identified in different phyla, but also not exclusively
in specific lineages, but rather scattered within these phyla.
Soil moisture responsive TGs were found within Beta-, Delta-
and Gammaproteobacteria, Chlorobi, Planctomycetes, and
Spirochaeta, often with the strongest response to 5-year data
(Table S4). These groups included members well-known to
live under anoxic conditions, e.g. Desulfobacterales, Syn-
throphobacterales, Rhodocyclales, Anaerolineae.

Combination of biogeographic community patterns
and ecological response patterns

Based on STAMP, approximately half of the 470 TGs, which
were analyzed by PLSR, were significantly influenced by

micro-topography (50%), elevation (9%), or both factors (7%,
Table S4). This knowledge about significantly affected taxa
was combined with the information about the ecological
response of each taxon obtained by PLSR. Analysis of the
taxa being responsive to elevation and their respective max-
imum SRs for temperatures revealed no specific temperature
threshold. Instead, data scattered in a range of −10 to +10 °C
air temperature (or −4 to +8 °C soil temperature) with an
accumulation between 2.5 and 0 °C air temperature (Fig. 6a
and S3). Applying the SR cut-off of ≥ 2, the number of TGs
responding to temperature was very high in the middle-alpine
belt with 95% of the significantly enriched TGs being soil or
air temperature affected. In comparison, 77% of the low
alpine belt-affected and 78% of the belt-unaffected TGs had
SRs ≥ 2 for soil or air temperature. This suggests that the
occurrence of microbes being controlled by temperature
increases with increasing elevation. Further, we evaluated the
influence of temperature on TGs that were responsive to
micro-topography rather than to elevation. A major part of the
responsive TGs had air temperature thresholds between −2
and +2 °C (or 0 °C soil temperature; Fig. 6b and S3) and
most of these were enriched in depressions. Actually, this
accounted for 82% of all enriched taxa in depressions, indi-
cating that temperature is also an important factor for
microorganisms in water-filled depressions, with the freezing
point of water being determinative. In contrast, temperature-
responsive microorganisms at ridges (88%) and slopes
showed broader air and soil temperature ranges (Fig. S2).

The threshold values for the 5-year moisture data were
widely scattered (Fig. 7), but especially the TGs specifically
enriched in depressions showed SR values ≥ 2 in 69% of all
cases. In contrast, only 23% of TGs in other micro-
topographic sites and 37% of all micro-topography-
unaffected TGs responded to soil moisture thresholds with
SR values ≥ 2 (Table S4). Further, an accumulation of
depression enriched taxa was found > 0.25 m³ H2O m³
(Figs. 7b and S4). In fact, 22% of the microbial taxa enri-
ched in depressions showed maximum SR values when
moisture increased above 0.25 m³ H2O m−³ soil, while the
percentage values were much lower for the other micro-
topographic sites, as well as for the TGs being unaffected by
micro-topography (3% and 8%, respectively).

Discussion

MCC along gradients of elevation and micro-
topography

Multivariate analysis of amplicon data revealed strong effects
of elevation and micro-topography on the MCC in arctic–
alpine soils, whereby ~50% of all TGs showed a significant
shift in relative abundance due to one of these factors
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(Table S4). However, only a few TGs were affected by both
parameters, suggesting that different microbial taxa may be
primarily controlled by either elevation or micro-topography.
Among the TGs that increased in relative abundance with
elevation were “Candidatus Dormibacteraeota”, “Candidatus
Eremiobacteraeota”, and Chloroflexi, taxa that have been
detected in other arctic and high alpine studies [10, 28, 52, 53]
and may thus represent typical colonizers of cold ecosystems.
Similar to our findings, it was observed that the micro-
topographic position in the landscape influences MCC besides
elevation [10]. In our study, the permanently wet depressions
differed clearly in soil moisture levels and provide oxic
and anoxic microniches, which probably supported the
development of distinct microbial communities, with mem-
bers being characteristic for anoxic aquatic habitats or flooded
soils, e.g. Geobacteraceae, Comamonadaceae, or Myx-
ococcales (Table S4; [54–56]).

Alpha diversity was only affected by micro-topography,
but not by elevation, which is in agreement with some

earlier studies [7, 11, 57]. Micro-topography leads to a
lower alpha diversity in soil microbial communities from
slopes compared to those from ridges and depressions,
implying a probable impoverishment at slopes.

Application of PLSR to combine amplicon data with
comprehensive long-term environmental data
records

In this study, spatially and temporarily resolved long-term
temperature and soil moisture data were used to explain
biogeographic patterns of the bacterial community. PLSR
analysis allowed us to combine the extensive environ-
mental datasets with amplicon data, which would not be
possible with commonly used methods such as linear
regression due to the higher number of explanatory vari-
ables than response variables [38]. We used different
algorithms to determine the importance of environmental
variables (SR, VIP, and sMC). Our results demonstrate that

Fig. 5 Examples of ecological response graphs showing the ecological
response patterns of different taxonomic groups: a genus DA101, b
genus Opitutus, c class Ellin 6529, d order Phycisphaerae WD2101, e
family Synthrophobacteraceae, and f genus Mycobacterium. Plots
display the selectivity ratios (SRs) of all environmental variables
(Table S1). The first three sections, separated by dotted lines, represent
soil temperature measures over 1, 2, and 5 years, respectively. Within

each temperature section, stepwise increasing threshold values ranging
from −16.9 °C to +22.4 °C are shown, followed by single values for
amplitude, maximum, minimum, and mean. The same pattern is
applied to present air temperature in a range from −25 °C to +25 °C
and soil moisture ranging from 0 to 0.5 m3 H2O m−3 soil. The last
section named soil characteristics includes soil texture, C, N, C:N
ratio, and pH values
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SR and sMC are well suited for the identification of the
most relevant drivers, but not VIP, which gives a different
result for the compiled data of all TGs (Fig. 4). VIP is
known to generate false-positive results more likely and is
therefore considered as least reliable here [46, 47]. The
overall good agreement of sMC and SR data was partially
supported when comparing results for individual taxa
(Table S4 and Fig. S1), i.e. a clear response to temperature
or soil moisture was often consistent, but the most impor-
tant driver was not necessarily identical for the individual

taxa (Table S4). This is explained by the fact that SR-
values and sMC values are often quite similar for differ-
ently calculated parameters within the same category, e.g.
for 2-year versus 5-year temperature data, so that slight
variations in the data due to the applied algorithm will lead
to differences concerning the most important factor (Fig. 5
and S1). However, the robustness of our findings in sum
across all analyzed TGs allows general conclusions about
major responses of the MCC to the identified environ-
mental factors.

Fig. 6 Plots displaying the
maximum selectivity ratio (SR)
in dependence on the 5-year air
temperature threshold values of
each taxonomic group (TG).
Different colors indicate TGs
that were significantly affected
or unaffected by elevation (a) or
affected by different micro-
topographic expositions (b)
according to STAMP. The
dotted line indicates the SR cut-
off at the value of 2, below
which variables were considered
to have no explanatory effect

Fig. 7 Plots displaying the
maximum selectivity ratio (SR)
in dependence on the 5-year soil
moisture threshold values of
each taxonomic group (TG).
Plot A shows TGs that were
significantly enriched in
depressions, at ridges or at
slopes according to STAMP
results, while plot B includes all
TGs that were unaffected by
micro-topography. The color
code indicates taxa responding
to different microtopographic
expositions. The dotted line
indicates the SR cut-off at the
value of 2, below which
variables were considered to
have no explanatory effect
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The ecological response patterns for individual taxa
derived based on sMC versus SR were in general similar for
many taxa (Fig. S1). SR is known to detect the most
influential variables, though it tends to underestimate the
total number of important variables, where sMC was
described to perform better [58]. This is reflected in the
finding that a broader range of different environmental
factors were identified as most relevant based on sMC
(Fig. 4). Considering that it was a major aim to find the
most influential factors that affect MCC and that SR has
been described as the most conservative approach, provid-
ing the least false positive rates, we focused on SR for the
further analyses [46, 47].

Due to the fact that community compositional data are
meanwhile more frequently transformed [48], we also
evaluated potential effects of transformed input data by
using exemplarily a clr-transformed dataset instead of the
rarefied TG table. The overall ecological response patterns
were very similar (Fig. 4), indicating that data preprocessing
does not affect PLSR considerably in our case. We attribute
this to the presence of clear differences between our sam-
ples and the fact that soil harbors highly complex microbial
communities, where the limitations of compositional data
analyses are discussed to be less relevant [59]. This will
probably be different for less complex communities, espe-
cially when harboring few highly responsive taxa. Again,
differences between rarefied and clr-transformed data were
seen in individual response patterns (Fig. S1, Table S4), but
the overall results leading to the identification of the most
important drivers for the arctic alpine soil microbial com-
munities remained consistent (Fig. 4).

Taken together, the PLSR approach couples state-of-the-
art MCC data with comprehensive microenvironmental
observations, as it has been done to investigate temperature
effects on plants, arthropods, phytomass, or primary pro-
ductivity [21, 58]. This is to our knowledge a new approach
in microbial ecology, providing new opportunities to iden-
tify important environmental drivers for microbial com-
munities. Combining the results for all TGs, we obtained
robust results, although we observed some variation in the
ecological response graphs for individual taxa, depending
on the applied algorithm. Further in-depth studies will help
to identify those methodological approaches that provide
the most robust results also for individual taxa.

Near-ground air temperature and soil moisture as
most important factors describing the ecological
response of microbes

The PLSR analysis in combination with the calculation of
SR values revealed that long-term temperature and soil
moisture data were best related to the MCC. We found
slightly higher SR values between MCC and near-ground

air temperatures than with soil temperatures, indicating that
short-term shifts, e.g. frost events, which are more pro-
nounced 15 cm above ground than 15 cm below ground, are
of superior importance for microorganisms thriving close
below the soil surface. Our study also demonstrated that
strongly agglomerated temperature or moisture values
(mean, minimum, maximum, and amplitude) were not very
well suited to explain MCC, while summing up hours of
specific temperature or soil moisture thresholds resulted in
better statistical relations. This may explain why studies
using mean annual temperature values did not identify
temperature as a major explanatory factor [5, 7, 10, 12]. In
contrast to these earlier studies, different soil characteristics
(pH, total C, total N, C:N ratio, and soil texture) showed
weaker relations with the MCC. However, long-term
records of dynamic soil parameters or additional variables
may be further important explanatory variables for the
biogeographic patterns of some TGs, especially for those
that showed SRs < 2 for all measured parameters. In sum-
mary, the high SR values for temperature and soil moisture
indicate that these factors provide the main environmental
framework for the MCC in our study and should thus be
considered as relevant factors for microbial communities in
arctic–alpine ecosystems.

Variation in MCC is better explained by long-term
than short-term temperature and moisture regimes

The 5-year temperature and soil moisture data often gen-
erated the highest SR values for most TGs, while the
responses were weaker for 1-year data (Fig. 4). This sug-
gests that the spatial patterns we observed in MCC are the
result of long-term rather than short-term site-specific tem-
perature or soil moisture regimes. Conversely, the better
relation to long-term conditions indicates a certain resilience
of microbial communities to year-to-year variations. This
suggests that short-term dynamics in the MCC due to e.g.
seasonality or snow melt [53, 60, 61] lead to a certain
amplitude of microbial reactions without changing the
whole system [62]. Our observation of a well-adapted MCC
to long-term temperature and soil moisture conditions pro-
vides an explanation why global warming studies investi-
gating the MCC in arctic–alpine regions found only little
effects or only after long-term treatments over several years
[63–67].

Identification of main drivers for elevational and
micro-topographic differences in MCC

Microorganisms responding to elevation were often
dependent on temperature variables, i.e., 83% of the enri-
ched TGs in the middle-alpine belt and 87% in the low-
alpine belt showed SRs ≥ 2 (Fig. 7). In comparison, 73% of
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the elevation-unaffected TGs had SRs ≥ 2. This temperature
effect is in agreement with studies reporting elevation-
dependent changes in animal and plant communities
[2, 3, 7], in which temperature is the most evident under-
lying environmental factor. However, it contradicts the
results of several previous microbial studies, which reported
only a minor influence of temperature on elevation-
dependent MCC shifts [5, 12]. Most studies identified soil
properties such as pH, continentality, soil moisture, or
carbon or nitrogen contents as underlying environmental
drivers for elevation-dependent MCC shifts [7, 8, 11, 57].
The use of long-term near-ground temperature data with
high spatial resolution instead of mean annual temperature
values might be the key to resolve this contradiction. This
would be in line with vegetation studies, which demonstrate
that relations to mean atmospheric air temperatures should
be used with caution due to their decoupling from the
complex micro-environmental conditions [15, 16, 22]. A
distinct threshold temperature for elevation-dependent taxa
was not evident, even though the responsiveness to tem-
perature increased with increasing elevation. It appears that
each TG is affected by a slightly different threshold tem-
perature ranging between −10 °C and +10 °C, indicating
taxon-specific microbial responses to temperature.
Responsive genera or species were in some cases bot not
necessarily members of the same family, class or order. This
is in agreement with the observation of Martiny et al. [68],
who reported that temperature adaptation is not a conserved
trait at higher taxonomic ranks.

MCC in depressions was strongly affected by soil and air
temperature (0 °C and −2 to +1.5 °C, respectively). A
temperature threshold around 0 °C, the freezing point of
water, appears reasonable for organisms living in environ-
ments with high soil moisture levels. In agreement, a tem-
perature of 0 °C has been reported to induce low soil
respiration rates in permafrost soils, which is explained by
the combination of cold, wet conditions, and low oxygen
availability [69]. Thus, temperature seems to play a major
role for microbial activity and community composition in
water-logged environments, likewise as observed by Wang
et al. in their mesocosm study [13]. We identified a specific
soil moisture threshold > 0.25 m³ H2O m−³ of depression-
enriched TGs (Fig. 7). Along with the detection of (facul-
tative) anaerobic bacteria with SR ≥ 2, we conclude that this
volumetric threshold value influences microbial life in the
studied soils by providing anoxic microniches, which are
known to affect microbial life substantially [70].

Conclusion

This study shows that not only elevation but also micro-
topography is an important parameter, determining the

biogeography of microbes in arctic–alpine ecosystems. To
identify the most important underlying environmental fac-
tors contributing to the observed biogeographic pattern, a
statistical approach new to the field of microbial ecology
was used. PLSR allowed us to combine comprehensive
long-term temperature and soil moisture datasets with 16S
rRNA amplicon data and provided information about the
ecological response for individual taxa. We identified for
the first time temperature as a relevant factor for elevation-
dependent soil microbial patterns in mountain ecosystems
and soil moisture as factor being closely linked to micro-
topographic differences. A specific soil moisture threshold
was identified for microorganisms being affected by micro-
topography, and linked to it a shift to anaerobic micro-
organisms in depressions. Overall, the microbial commu-
nities showed a stronger response to 5-year temperature or
soil moisture conditions than to 1-year data, indicating a
certain resilience of microbial communities to temperature
variation in arctic–alpine ecosystems. This is in line with
several global warming studies in arctic–alpine ecosystems,
which report MCC responses only after long-term warming
treatments. Thus, our study revealed that temporarily highly
dynamic environmental factors such as temperature or soil
moisture contribute more importantly to MCC variation in
arctic–alpine ecosystems than previously thought. This
becomes evident when proxies for these parameters are
derived from long-term datasets with high temporal and
spatial resolution to account for microscale heterogeneity.
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