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Cancer stem cells drive disease progression and relapse in many types of cancer. Despite

this, a thorough characterization of these cells remains elusive and with it the ability to

eradicate cancer at its source. In acute myeloid leukemia (AML), leukemic stem cells (LSCs)

underlie mortality but are difficult to isolate due to their low abundance and high similarity to

healthy hematopoietic stem cells (HSCs). Here, we demonstrate that LSCs, HSCs, and pre-

leukemic stem cells can be identified and molecularly profiled by combining single-cell

transcriptomics with lineage tracing using both nuclear and mitochondrial somatic variants.

While mutational status discriminates between healthy and cancerous cells, gene expression

distinguishes stem cells and progenitor cell populations. Our approach enables the identifi-

cation of LSC-specific gene expression programs and the characterization of differentiation

blocks induced by leukemic mutations. Taken together, we demonstrate the power of single-

cell multi-omic approaches in characterizing cancer stem cells.
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T issues with high cellular turnover, such as the hemato-
poietic system or the intestine, depend on “professional”
adult stem cells for their continuous regeneration1.

Oncogenic mutations in these cells can cause cancers that
maintain a hierarchical organization reminiscent of the tissue of
origin. Only cancer stem cells (CSCs), residing at the top of the
hierarchy, are able to fuel long-term cancer growth and drive
relapse, whereas the bulk of the cancer consists of rapidly dividing
cells with limited capacity for self-renewal, i.e., cells that exhaust
their replicative potential after a finite number of divisions2–4.
Owing to their stem cell-like properties, CSCs constitute an
important driver of relapse, but their low division rates make
them difficult to target therapeutically. Tools that permit the
confident identification and characterization of CSCs are there-
fore urgently needed.

Acute myeloid leukemia (AML) serves as a paradigm for the
study of cancer stem cells5. In 10–20% of healthy individuals over
age 70, the acquisition of pre-leukemic mutations in hemato-
poietic stem cells (HSCs) results in the dominance of a small
number of HSC-derived clones, a process termed Clonal Hema-
topoiesis of Indeterminate Potential (CHIP)6,7. While such pre-
leukemic stem cells (pre-LSCs) are capable of giving rise to
healthy blood and immune cells, additional mutations can cause a
complete block in differentiation and thereby result in the
malignant expansion of aberrant progenitor cells8. The accumu-
lation of these so-called “blast” cells is ultimately fueled by the
presence of leukemic stem cells (LSCs). Classic chemotherapy
regimens primarily target actively cycling “blast” cells and initially
lead to remission. Since quiescent or protected LSCs often avoid
eradication, relapse rates are high with 5-year survival rates below
15% for patients over the age of 60. A key goal is, therefore, to
identify therapeutic strategies for targeting LSCs, while sparing
healthy HSCs9–11. Characterizing gene expression differences
between HSCs, pre-LSCs and LSCs would be a valuable step
towards that goal.

Previously, LSC-specific gene expression patterns were char-
acterized by isolating cells positive for stem cell-specific surface
markers used in the healthy hematopoietic system, such as
CD34 (refs.12–15). More recently, leukemic engraftment rates in
xenotransplant models were correlated with gene expression16–19.
However, these approaches all measure impure populations of
cells. Here, we propose that by measuring mutational status and
gene expression in single cells simultaneously, cancer stem cells
can be uniquely distinguished from both mature cancer cells
(based on gene expression) and healthy stem cells (based on
mutational status) (Fig. 1a). Finally, pre-LSCs are thought to
typically carry mutations associated with CHIP (e.g., in
DNMT3A) but not mutations associated with leukemia (e.g., in
NPM1)7,20,21, potentially enabling their identification by profiling
both known leukemic and known preleukemic mutations.

While we and others have demonstrated the utility of single-
cell genomics for mapping hematopoietic differentiation hier-
archies22–24, tracking mutations or clones in single-cell gene
expression data remains difficult. Previous work has amplified
somatic mutations from complementary DNA (cDNA)25–28,
extracted mutational information from single-cell RNA-seq
reads29, or processed both genomic DNA and RNA from single
cells30–32. However, these protocols suffer from a lack of con-
fidence in assigning cells to clones and/or require prior knowl-
edge of genomic mutation sites. As an alternative tool for clonal
tracking, the use of endogenous mitochondrial mutations as
clonal markers has been proposed, obviating the need for prior
knowledge of genomic mutations33,34. However, the application
of these methods to characterize LSCs has not been demon-
strated, and in particular requires the ability to reliably detect
clonal expansion events, associate clinically relevant coding

mutations to clones with high confidence, and draw statements
on gene expression changes between clones.

Here, we introduce MutaSeq, a workflow that amplifies nuclear
mutations from cDNA, and mitoClone, a computational tool that
achieves high-confidence clonal assignments and de novo dis-
covery of clones using mitochondrial marker mutations when
available. MutaSeq data from four AML patients allows us to
distinguish HSCs, pre-LSCs, LSCs, and progenitor/blast popula-
tions. Thereby, we identify transcriptomic consequences of leu-
kemic and pre-leukemic mutations relevant to stem cells.
Additionally, we characterize the contribution of different leu-
kemic and pre-leukemic clones to healthy and disease-specific
bone marrow populations with unprecedented detail. Altogether,
our results demonstrate cancer stem cell identification and
characterization by simultaneous mapping of genomic and
mitochondrial mutations in single-cell transcriptomes.

Results
MutaSeq provides high coverage of genomic and mitochon-
drial mutations. To establish a robust experimental setup for the
clonal tracking of human cells in single-cell transcriptomic data, we
evaluated various modifications of the Smart-seq2 protocol aimed at
increasing coverage at polymorphic genomic sites of interest (Sup-
plementary Fig. 1a). We found that inclusion of targeting primers
during reverse transcription frequently resulted in the formation of
undesired byproducts, especially when targeting a higher number of
sites (Supplementary Fig. 1a–d). By contrast, when sites of interest
were targeted during cDNA amplification, we obtained high-quality
transcriptome data while increasing the average number of target
sites captured per cell by 2–4-fold compared to a non-targeted
approach (Fig. 1b, c and Supplementary Fig. 1a, b). An automated
pipeline for primer design that minimizes off-target sites and
potential primer-dimer formation is available at https://github.com/
veltenlab/PrimerDesign (see also the Methods section). MutaSeq
stably works with up to 30–40 primer pairs (targets); when higher
numbers of primers are included, library quality progressively
decreases (Supplementary Fig. 1e). In a test with only highly
expressed target genes, target amplicons are created from all primer
pairs in virtually all single cells (Supplementary Fig. 1f, g).

To evaluate MutaSeq, we performed deep exome sequencing of
an AML patient (P1) and designed primers targeting 14 nuclear
mutations (Supplementary Data 1 and 4). We then systematically
compared the performance of MutaSeq and non-targeted Smart-
seq2 on CD34+ cells from this patient. MutaSeq increased the
number of target sites covered per single cell from a median of 1
to a median of 4 (Fig. 1c–e) and recapitulated the variant allele
frequencies estimated by exome sequencing with higher accuracy
than Smart-seq2 (Fig. 1f), while maintaining comparable
transcriptome data quality (Supplementary Fig. 1h, i). Both
methods underestimated the abundance of frameshift mutations,
possibly as a consequence of nonsense mediated decay35 (Fig. 1e,
f). While our data do not provide statistical evidence for an effect
of target gene length or sequence complexity on dropout, we
cannot exclude such effects.

Importantly, both methods provide an excellent coverage of the
mitochondrial genome (mean ~100X mitochondrial coverage
given a mean sequencing depth of ~788,000 total reads per cell,
Fig. 1g), unlike most other single-cell RNA-seq protocols applied
in the context of clonal tracking27–29,31 (Supplementary Fig. 1j).
Altogether, these results demonstrate that MutaSeq efficiently
covers the mitochondrial genome in single-cell RNA-sequencing
experiments and provides improved coverage of genomic target
sites compared to Smart-seq2. Importantly, it requires no changes
to existing Smart-seq2 pipelines, except for the addition of
targeting primers during cDNA amplification.
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Simultaneous mapping of mitochondrial and genomic muta-
tions permits high-confidence tracking of leukemic, pre-leu-
kemic, and healthy clones. To investigate if MutaSeq can
distinguish leukemic, pre-leukemic and residual healthy clones,
we generated data from four AML patients with heterogeneous
genotypes and phenotypes (Figs. 2a, 3b and Supplementary
Fig. 2). To allow for a better characterization of stem cells in each
patient, cells were sorted such that putative stem and progenitor
cells (CD34+) and putatively more mature cells (CD34-) were
approximately covered at equal portions (Supplementary Fig. 2).
Of note, two of the patients (P2, P4), exhibited bone marrow
consisting of >99% of CD34− cells (Supplementary Fig. 2a).
Owing to different capture rates across individuals and gates, the
final data set consisted of between 618 to 1430 cells per patient, of
which between 190 and 968 were CD34+ (Supplementary Fig. 2b,
c). We therefore avoid statements on quantitative shifts in
population size between patients throughout this manuscript.

We then called nuclear genomic mutations, as well as
mitochondrial mutations, at the single-cell level in order to
cluster cells into clonal hierarchies. Bulk exome sequencing of the
patients had identified known pre-leukemic mutations present at
high allele frequency and known leukemic mutations present at a

somewhat lower allele frequency (Fig. 2a and Supplementary
Data 1. Patient 1: mutations in SRSF2,TET2/CEBPA and SRSF2,
TET2/KLF7; Patient 2: mutations in DNMT3A/NPM1; Patient 3:
mutations in SRSF2/IDH2; Patient 4: leukemic Trisomy 8 and
BRAF mutations). While some statements on clonal hierarchies
could be drawn solely based on calls of these nuclear somatic
mutations (Supplementary Fig. 3a), the relatively high dropout of
these sites impeded robust assignments of cells to clones
(Supplementary Fig. 3b–d). Moreover, the result was biased by
the expression levels of the mutated genes of interest: in cells with
low expression, dropout was higher, leading to a higher fraction
of false-negative calls, i.e., false classifications of mutant cells as
reference (Fig. 1e and Supplementary Fig. 3c, d). Similar issues
were faced by other methods using related approaches of
mutation amplification from cDNA27,28.

To overcome these limitations, we next determined if
mitochondrial mutations can be used to refine clonal hierarchies
jointly with the nuclear mutations. Since mitochondrial RNA is
extensively edited, it is important to cluster cells based solely on
mutations, and not on seemingly polymorphic sites that are the
result of post-transcriptional events with no relationship to clonal
structure. Here, we developed and tested a filtering strategy that

Fig. 1 MutaSeq for high-quality single-cell RNA-seq data with clonal information. See also Supplementary Fig. 1. a Overview of the study. HSC:
hematopoietic stem cell, (pre-)LSC: (pre-)leukemic stem cell, Blast: mature leukemic blast. b Overview of the MutaSeq method. Targeting primers (purple)
are included during the cDNA amplification step of the Smart-seq2 protocol. Targeting primers are directly fused to illumina library adapters (blue) and
therefore get amplified efficiently during library preparation. Tagmentation introduces the same adapters to the full-length cDNA product. c Number of
target sites covered per cell, across n= 206 (Smart-seq2) or n= 658 CD34+ (MutaSeq) bone marrow cells from patient P1 (see the Methods section
Data visualization, for a definition of boxplot elements). d Mean gene expression of genes containing mutations of interest is plotted against the fraction of
cells in which the mutation is covered. e Fractions of cells covering key non-synonymous mutations observed in the patient. Reference call: The reference
allele was observed. Mutant call: the mutant allele, as defined by bulk exome sequencing (Supplementary Data 1) was observed. Mutant+Reference: both
alleles were observed. f Allele frequency estimates derived from deep exome sequencing compared to allele frequency estimates derived from MutaSeq
(red dots, n = 2208 single cells) or Smart-seq2 (gray dots, n = 206 single cells). Dot size indicates coverage at target site. Point shape indicates the type of
mutation. Error bars indicates interquartile range. See figure source data for complete specification of sample size used to derive statistics (n). g Coverage
of the mitochondrial genome in MutaSeq data. See Supplementary Fig. 1j for a comparison across methods. Green line segments correspond to genes in the
mitochondrial genome.
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only makes use of mitochondrial mutations for clonal tracking if
they uniquely occur in individual patients (Supplementary Fig. 4a,
see also Methods). This idea assumes that RNA editing events are
typically shared between individuals, whereas somatic mutations
are not. Using the whole-exome sequencing data, we validated
that this approach, at the level of genomic sites, correctly
distinguishes mutations and RNA editing events with a precision
of 97% (Supplementary Fig. 4b, c). We further analyzed various
control data sets with known associations between mitochondrial
mutations and clones33 to validate that this approach enables the
detection of relevant mitochondrial mutations without a need for
a DNA-based reference, and further enables the unsupervised
identification of clones (Supplementary Fig. 4d–f). We have
implemented all the required filtering and blacklisting routines
required for the identification of high-confidence somatic
mitochondrial variants in the mitoClone R package (https://
github.com/veltenlab/mitoClone).

We then computed clonal hierarchies from both nuclear and
mitochondrial somatic variants using a mathematical model that
accounts for allelic dropout36 (see Methods for detail, all required
tools are contained in the mitoClone package). In patients P1 and
P2, pre-leukemic as well as sub-clonal leukemic mutations were
significantly associated with distinct sets of well-covered mito-
chondrial variants (Supplementary Fig. 5a, b), such that clonal

hierarchies could be delineated, and a confident assignment of
cells to clones became possible (Fig. 2b, c and see Supplementary
Fig. 3b for a quantitative analysis). Unlike genomic mutation
calling from cDNA, identification of clonal identities from
mitochondrial mutations is mostly not, and in one case weakly,
affected by gene expression levels or library quality (Supplemen-
tary Figs. 3c, d, 5c), and is possible at lower sequencing depths
(Supplementary Fig. 5d–f), since mitochondrial genes are
consistently highly expressed.

Importantly, the clonal structure was validated by targeted
DNA-sequencing from single-cell derived colonies (Patient 1,
Fig. 2d). Across the patients, we identified clones carrying known
pre-leukemic mutations (e.g., in SRSF2, DNMT3A) and sub-
clones carrying known leukemic mutations (e.g., CEBPA, NPM1)
(Fig. 2e, f). Below we functionally characterize these clones as
leukemic or pre-leukemic based on their contribution to healthy
blood production (Fig. 4).

In patient P3, allele frequencies of leukemic and pre-leukemic
mutations were near 50%, indicating the presence of a single
leukemic clone (Supplementary Data 1). In patient P4, an 18-year
old individual with a leukemia driven by triplication of
chromosome 8, no mitochondrial markers were identified, even
though exome sequencing suggested the presence of sub-clonal
variants (Supplementary Data 1). In this case, MutaSeq still
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Fig. 2 Mitochondrial mutations serve as high-confidence clonal markers in AML. See also Supplementary Figs. 2–6. a Overview of the patients. CD34+
and CD34- indicate the dominant surface phenotype of the leukemic blasts (see Fig. 3b and Supplementary Fig. 2 for quantification). For each patient,
genes containing mutations are printed in italic (see Supplementary Data 1 for a complete list). Subcl., sub-clonal mutation. b Heatmap depicting variant
allele frequencies (color coded, see right of Fig. 2c for a key) observed in single-cell RNA-seq data of n= 1430 cells from P1. Gray indicates missing values.
Cells and mutations are arranged according to the clustering result obtained by PhISCS36 as described in the “Methods” section, Analysis of mitochondrial
mutations and reconstruction of clonal hierarchies. Calculation of the likelihood is described in the same section. Mutations with low coverage (in TET2, and
SPEN) were not included in the clustering and are depicted in the heatmaps as metadata, however, in all cases except TET2 frameshift there is quantitative
evidence for their association with specific clones (Supplementary Fig. 5b). For reproducing the computations, see the vignettes accompanying the
mitoClone package. For mutations, nuc is nuclear genome; mt is mitochondrial genome. c Like panel b, but using n= 1066 cells from P2. DNMT3A is
included as a low coverage mutation with significant association to the pre-leukemic and leukemic clone (Supplementary Fig. 5b). d Heatmap depicting
variant allele frequencies (color coded, see legend to the right of Fig. 2c) observed in targeted DNA-seq data from n= 288 single-cell derived colonies from
P1. e PhISCS36 was run on the mutational data from P1 to reconstruct a clonal hierarchy, see the Methods section Analysis of mitochondrial mutations and
reconstruction of clonal hierarchies. Take note that while the order of mutations is based on the PhISCS model, the grouping of mutations into clones is
based on an arbitrary cutoff to provide a useful clustering for further analyses. See Clone in Fig. 2c legend for color codes. f Like e, but for P2.
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permits a qualitative analysis using genomic mutations alone (see
below). Taken together, our approach allows for the identification
of putatively leukemic, pre-leukemic, and healthy clones and can
assign cells to clones with high confidence if mitochondrial
somatic variation is present.

Identification and characterization of clones de novo. We next
investigated if the use of mitochondrial somatic variants enables
the identification and characterization of clones without prior
knowledge of nuclear mutations. To that end, we made use of a
data set from patient P1 generated without amplification of
nuclear sites (i.e., standard Smart-seq2). A clear clonal structure
was identified in an unsupervised manner based solely on

mitochondrial variants (Supplementary Fig. 6a). In order to
examine whether the presence of somatic genetic variability is
associated with the different clones, we then queried the muta-
tional status of 13,797 genomic sites annotated as mutated in
AML in the COSMIC database37 using a beta-binomial model
(see Methods). This unsupervised analysis revealed a highly sig-
nificant association of the SRSF2 P95H mutation with the leu-
kemic and pre-leukemic sub-clones (Supplementary Fig. 6b, c).
Their malignant nature was further evidenced by a markedly
reduced ability to contribute to the T cell lineage (Supplementary
Fig. 6d and see also below).

To further demonstrate our ability to identify clones de novo, we
highlight a clonal expansion of non-leukemic cells in P2 (Fig. 2f).

Fig. 3 An overview of cell types observed in bone marrow of healthy and leukemic individuals. See also Supplementary Figs. 2 and 7. a Data from the five
individuals (Fig. 1a) were integrated using scanorama60 and visualized in two dimensions using uMAP62,63. Clusters are color-coded. N= 5228 cells. b
Fraction of CD34+ cells in total bone marrow from the five individuals. CD34+ cells were enriched during FACS sorting for a higher representation in the
single-cell RNA-seq data (Supplementary Fig. 2). c CD34+ cells from a healthy individual22 highlighted on the uMAP. Black dots correspond to cells from
the HSC/MPP cluster. d Cells from each patient were highlighted separately on the uMAP. Black dots correspond to cells from the HSC/MPP cluster. e
Logicle-transformed expression of key FACS markers highlighted on the uMAP (Supplementary Fig. 7a). f Data from n= 667 cells from the HSC/MPP
cluster were integrated across individuals using MNN64. The smoothened expression of several marker genes of healthy HSC/MPP subsets22 is plotted
over the first dimension of variability identified by MNN (Supplementary Fig. 7f). g Volcano plot of the log10 expression change (Log FC) in n= 569 AP1-
high CD34+ blasts vs. n= 667 HSC/MPP-like cells, plotted against corrected p-values from MAST, using a model that accounts for differences in library
quality and patient identity/batch (see the Methods section Single-cell gene expression data analysis). AP1-high CD34+ blasts were chosen for this
comparison since AP1-low blasts, in terms of all marker genes, appear to constitute an intermediate state between Healthy-like HSC/MPPs and AP1-high
blasts. h Log-normalized expression of FOS and JUN on the uMAP from panel a. See panel e for a color scale. i Venn diagram displaying genes with
significant overexpression in AP1-high CD34+ blasts and CD34− blasts, compared to all other cells from the data set.
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This clone would have been missed by approaches relying on
genomic mutations alone27,28,31. Interestingly, these cells were not
associated with the pre-leukemic DNMT3A mutation. By again
querying sites from the COSMIC database37 using a beta-binomial

model, we identified that they had uniquely acquired a mutation in
the RPL3 gene (Supplementary Fig. 6b, e). These results suggest that
this clonal expansion event is independent of the leukemia and
associated with the acquisition of unrelated nuclear mutations.

Fig. 4 Effects of (pre-)leukemic mutations on cellular differentiation. See also Supplementary Fig. 8. a Clonal identity of the cells from P1 highlighted on
the uMAP (Figs. 2b, e, 3a). Gray dots correspond to cells from other patients. The dotted ellipse serves as a guide to identify the location of the HSC/MPP
population. b Clonal identity of the cells from P2 highlighted on the uMAP (Figs. 2c, f, 3a). c Observed variant allele frequencies for the IDH2 R88Q
mutation from P3 highlighted on the uMAP. Small black dots correspond to cells with no coverage of the mutation (see Supplementary Fig. 8a for an
estimate of target capture rates). d Observed variant allele frequencies for the synonymous NUP188 mutation from P4 highlighted on the uMAP. This
mutation was observed at an allele frequency of 50% in exome data of total bone marrow. Note that CD34+ cells were enriched more than 100-fold during
sorting for single-cell RNA-seq (Supplementary Fig. 2 and see Supplementary Fig. 8a for an estimate of target capture rates). e Estimate of the contribution
of different clones to the cell types. For P1 and P2, clonal identities from Fig. 2 were used. For P3, cell were classified as leukemic if the IDH2 mutation was
observed, as pre-leukemic if the SRSF2 mutation was observed, or as non-leukemic if the reference allele was observed for both mutations. Cells without
coverage were excluded from the analysis. For P4, cells were classified as leukemic if the NUP188 mutation was observed, or as non-leukemic if the
reference allele was observed. Bars are only shown for populations covered with at least 10 cells (see Supplementary Fig. 8b for absolute numbers and
Supplementary Fig. 8c, d for a quantitative analysis).
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We also take note of a putative non-leukemic clone in P1
marked by a single mitochondrial variant (5492T>C). With one
exception, all cells carrying this variant are positive for the T-cell
marker CD3 (Figs. 2b, 4a). Hence, this variant was likely acquired
in a T-cell precursor or T-cell clone, although we cannot formally
exclude that it corresponds to a T-cell-specific RNA editing event.

Taken together, these results demonstrate that our approach
can identify and characterize clones de novo without prior
knowledge of nuclear genomic mutations. The mitoClone
package implements all routines for clonal clustering and
mutation calling.

A map of cell states in leukemic bone marrow identifies HSC-
like cells. We next used single-cell transcriptome data to distin-
guish stem cells, progenitor cells and leukemic blasts. To define
cell populations in our samples, we integrated the gene expression
data from all four patients along with data from CD34+ bone
marrow cells of a healthy individual22 into a two-dimensional
representation, and characterized cell types based on marker gene
expression (Fig. 3a, Supplementary Fig. 7a–c, f, Supplementary
Data 2).

All four bone marrow samples contained cells that clustered with
HSCs and multipotent progenitor cells (HSC/MPP) from the
healthy individual (Fig. 3b–d) and displayed a CD34+CD38low,
FSC/SSClow phenotype (Fig. 3e). Unsupervised analysis separated
these cells into quiescent immature HSC-like cells (HLF+), more
proliferative erythromyeloid primed progenitors (GATA2+), and
lymphomyeloid primed progenitors (FLT3+) (Fig. 3f and Supple-
mentary Fig. 7f). Cells resembling healthy erythroid progenitors and
MEPs were also identified, alongside various types of B-cell
precursors and T/NK cells (Supplementary Fig. 7b, c).

In contrast to non-leukemic populations, the majority of cells
from leukemic bone marrow samples (“blasts”) were very
different between the patients, in line with previous observa-
tions27 (Fig. 3d): we observed (a) differentiated blasts (CD34-
SSC/FSChi) that expressed neutrophil genes such as calprotectin
(S100A8, S100A9) and AZU1 (Fig. 3e and Supplementary Fig. 7a);
(b) CD34+ blasts that were highly mitotic and expressed the fetal
hemoglobin HBZ; and c) CD34+CD38low blasts expressing
markers typical of hematopoietic stem and progenitor cells
(HSPCs), such as PROM1 (CD133) and MEIS1 (Supplementary
Fig. 7a, d, e). The latter population appeared to be connected to
the HSC/MPP population across a continuum of states that
gradually upregulate AP1 transcription factor expression (FOS,
JUN, FOSB, JUNB, JUND) while down-regulating MHC class II
(Fig. 3g, h and Supplementary Data 3). A global analysis of highly
expressed genes across all populations revealed that high
expression levels of AP1, as well as several Krüppel-like factors
and poly-A binding proteins, were common to all different blast
populations from the patients and distinguished them from
healthy progenitors (Fig. 3h, i). Of note, high AP1 and KLF
activity have recently been identified as a hallmark conserved
across genetically distinct types of AML by bulk-sequencing
studies that only investigated blast populations38. Our results
demonstrate that indeed these transcription factors appear to be
relevant in all, phenotypically very different, blast populations.

Taken together, all four leukemia samples could be stratified
into stem cells, progenitors, and blasts. Furthermore, all patients
retain cells highly similar to healthy HSCs, although in variable
abundance.

Clonal tracking identifies cellular differentiation states and
gene expression patterns associated with pre-leukemic and
leukemic mutations. Gene expression information alone was
insufficient to distinguish cancerous from non-cancerous HSPCs

(Supplementary Fig. 7f). To definitively characterize cells as (pre-)
LSCs or residual healthy cells, we therefore integrated single-cell
gene expression data and clonal tracking results (Fig. 4a–d). If
mitochondrial somatic variability was present, we were able to
assign clonal identities with high confidence, allowing us to draw
quantitative statements (Patients P1 and P2). In the absence of
mitochondrial somatic variability, we used nuclear mutation calls
in SRSF2, IDH2 and NUP188 for purely qualitative statements
(Patients P3 and P4). The capture rates of these marker sites
ranged from 70% (SRSF2) to 11% (NUP188) (Supplementary
Fig. 8a).

Clones associated with leukemic mutations were most prevalent
in the blast compartments and were also detected in the HSPC
compartment, but were almost absent in lymphoid (B, NK, T)
lineages. By contrast, clones associated with pre-leukemic
mutations were found in all lineages, but mostly displayed a
decreased prevalence in lymphoid lineages (Fig. 4e and Supple-
mentary Fig. 8b–d). These observations confirm the designation of
these clones as “leukemic” and “pre-leukemic”. Furthermore, these
results highlight that the leukemic mutations may initiate
differentiation blocks at various levels, as previously
reported4,27,39. For example, in patients P1 and P3, leukemic cells
had retained the ability to contribute to the erythroid lineage,
while in patient P2, this activity was restricted to the pre-leukemic
and non-leukemic clones. Importantly, the leukemic cells in P1,
P2, and P3 were observed in a cell state that is highly reminiscent
of healthy HSCs/MPPs on a molecular level, and retains the ability
to contribute to various lineages, i.e., is functionally multipotent.

Next, we investigated the molecular effects of distinct
mutations in detail. Previously, the consequences of specific
leukemic mutations were commonly studied in mouse models.
MutaSeq data allows us to compare gene expression between
clones differing only in a single mutation, thereby elucidating the
specific effects of that mutation on human hematopoiesis.

Mutations in the de novo DNA methyl transferase DNMT3A
are the most common cause of benign clonal expansions of HSCs
in individuals of advanced age6,7. In patient P2, DNMT3A-
mutated pre-leukemic HSPCs were rather stem-like (with
relatively high expression of HLF) or primed into the erythro-
myeloid direction (with relatively high expression of GATA2)
(Figs. 4b and 5a). These results are in line with recent findings
from DNMT3A knock-out mouse models40. Interestingly,
independent of cell state, this coincided with an upregulation of
MLLT3, a gene whose enforced expression promotes erythroid-
megakaryocytic output from HSCs41 (Fig. 5b, c and Supplemen-
tary Data 3).

Mutations in the multifunctional ribonucleoprotein NPM1 are
identified as drivers for acute myeloid leukemia in 30% of patients
and frequently co-occur with pre-leukemic DNMT3A muta-
tions21. In patient P2, the erythromyeloid bias of the DNMT3A
clone was lost upon acquiring the leukemic NPM1 mutation.
NPM1 mutated cells upregulated HOXB3, again in line with data
from mouse models42–44 (Fig. 5b, c). Independent of cell state,
these cells further exhibited upregulation of CD96 RNA
expression, which has previously been identified as a leukemia
stem cell-specific marker12. CD96 was also highly expressed on
leukemic HSC/MPP-like cells of patient P3, but not in patient P1,
further illustrating the patient-specific nature of LSC markers
(Supplementary Fig. 8e).

Mutations in KLF7 are not commonly observed in leukemia;
however, krüppel-like factors are highly expressed by genetically
and phenotypically different blasts38 (see above). In patient P1,
the KLF7 mutated clone displayed a higher proportion of cells in
G2/M phase (Fig. 5d). Based on a reanalysis of ATAC-seq data
from human CD34+ cells45 we found that enhancers containing
KLF7-binding sites were enriched near tumor suppressor genes46,
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including CDK6, PTEN, RUNX1, and FLT3, compared to active
enhancers not containing KLF7 binding sites (p= 0.002,
Supplementary Fig. 8f).

In sum, we have used a small heterogeneous patient cohort to
demonstrate, as a proof-of-concept, that the acquisition of
specific mutations is frequently linked to an altered gene
expression program, which is consistent with data obtained from
mouse models40,42–44.

Finally, we compared gene expression between all (pre-)
leukemic and non-leukemic cells, with the goal of identifying
potential markers or drug targets present in all (pre-)leukemic
cells, but not in residual healthy cells. In patient P2, our analysis
identified a small number of hits (Fig. 5e and Supplementary
Data 3), most notably FOS, which was expressed in all (pre-)
leukemic cells across cell types, but not by non-leukemic HSC/
MPPs (Fig. 5f), and the MHC class I genes HLA-L and HLA-H,
which were expressed by all healthy cells, but not by (pre-)
leukemic cells. Across all patients, FOS was consistently over-
expressed in cells carrying (pre-)leukemic lesions, both in HSCs/
MPPs, and in other cell types (Fig. 5g).

Taken together, these results demonstrate the ability of
MutaSeq and mitoClone to delineate developmental and
molecular effects of clonal evolution caused by leukemic and
pre-leukemic mutations.

Discussion
Herein, we have described a joint single-cell transcriptomics and
clonal tracking approach (MutaSeq and mitoClone) for char-
acterizing LSCs, charting their differentiation capabilities, and
mapping the molecular consequences of oncogenic mutations.
While single-cell gene expression profiling permits the identifi-
cation of cells with a stem-cell signature, clonal tracking using
genomic and mitochondrial mutations allows for a clean
separation between healthy and cancerous clones. Thereby we
distinguish LSCs, HSCs, pre-LSCs, healthy progenitors, and
blasts. We have demonstrated this approach in the context of
acute myeloid leukemia, and we propose that similar approaches
may be applied to other types of cancers.

By applying our approach to bone marrow samples from four
AML patients, we have demonstrated its capabilities:

Charting the differentiation capacities of hematopoietic clones.
By quantifying the contribution of (pre-)leukemic cells to blood
lineages, we have shown that in patients P1–P3, leukemic clones
not only form blasts but also exist in an HSC-like state. Pre-
leukemic clones additionally contribute to erythroid and lym-
phoid lineages. Multipotent HSCs are, therefore, the likely cell of
origin in these patients4. In patient P4, with one exception, only
cells with a mature phenotype displayed leukemic mutations,
illustrating that the disease can also be fueled by cells with a

Fig. 5 Molecular consequences of leukemic and pre-leukemic mutations. See also Supplementary Fig. 8. a Log-normalized expression of GATA2, FLT3 and
HLF in HSC/MPPs from P2, stratified by clonal identity (see the Methods section Single-cell gene expression data analysis, for detail on data
normalization). Asterisk indicate significance from a two-sided Wilcoxon test, ***p < 0.001, **p < 0.01, n.s.: not significant (see the Methods section Data
Visualization, for a definition of boxplot elements). b Volcano plot of the log10 expression change (log FC) in pre-leukemic (n= 55) vs. leukemic (n= 50)
CD34+ cells of P2, plotted against corrected p-values (FDR) from MAST65, using a model that accounts for differences in cell type and library quality (see
Methods). Only the following CD34+ cell types from Fig. 3a were included in the test: HSC/MPP, CD34+ Blasts (both subsets), Neutrophil precursors,
and MEPs. c Dot plot comparing the expression of relevant genes across non-leukemic, pre-leukemic, and leukemic cells in the different cell types. Symbol
size scales with the number of cells per cell type. d Scatter plot depicting the fraction of (pre-)leukemic cells in relation to the fraction of cells from the
KLF7-mutated clone in various cell types in P1. Dotted line indicates the mean ratio across all cells, error bars denote 95% confidence intervals from a beta
distribution, and asterisk indicate significant deviation from the mean ratio, as follows: *p < 0.05; **p < 0.01; ***p < 0.001. p-values are from a two-sided
binomial test and were not adjusted for multiple testing (see Supplementary Fig. 8c and figure source data for number of single cells underlying each
group). e Volcano plot of the log10 expression change (log FC) in (pre-)leukemic (n= 105) vs. non-leukemic (n= 41) CD34+ cells of P3, plotted against
corrected p-values (FDR) from MAST65, using a model that accounts for differences in cell type and library quality (see Methods). Only the following cell
types from Fig. 3a were included in the test: HSC/MPP-like, CD34+ Blasts (AP1 high and low), Neutrophil precursors, and MEPs. f Dot plot comparing the
expression of FOS across non-leukemic, pre-leukemic and leukemic cells in the different cell types. Dot size and color represent the quantity of cells and
gene expression level, respectively (see legend in Fig. 5c). g Boxplots comparing the log-normalized expression levels of FOS between cells with evidence of
originating from the non-leukemic clone(s), and cells with evidence of originating from the leukemic or pre-leukemic clones. Cells were assigned to clones
as in Fig. 4e (see the Methods section Single-cell gene expression data analysis, for detail on data normalization, see figure source data for number of
single cells underlying each group and see the Methods section Data Visualization, for a definition of boxplot elements).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21650-1

8 NATURE COMMUNICATIONS |         (2021) 12:1366 | https://doi.org/10.1038/s41467-021-21650-1 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


committed phenotype39. Alternatively, the LSC population in this
patient might be rare among CD34+ cells.

Identification of clones de novo. In the presence of mitochon-
drial somatic variability, our approach does not rely on previously
known nuclear mutations to detect clones. In the example of
patient 2, we have thereby identified an expanded clone present at
very low frequency in total bone marrow, but highly abundant in
the CD34+ fraction. We have demonstrated that this clone is
associated with a nuclear mutation in the RPL3 gene, which we
discovered de novo. This result illustrates the low clonal com-
plexity of hematopoiesis in individuals of advanced age, which is
often not associated with candidate driver mutations20.

Identification and characterization of LSCs. Importantly, our
approach was capable of identifying leukemic cells highly remi-
niscent of healthy HSCs. These cells will be important to target
therapeutically without ablating their healthy counterparts9–11.
While stemming from a study cohort of limited size, our data
suggest that FOS might constitute a potential target for further
investigation, as it is expressed throughout the disparate leukemic
populations including the most HSC-like cells, pre-LSCs, and
blasts, but not in healthy HSCs. Further, we have confirmed that
CD96 is a specific marker for LSCs in some patients12. Studies in
larger cohorts will be required to assess how generally applicable
these findings are.

Taken together, our study expands upon earlier work on the
molecular phenotypes of AML blasts27,38 and constitutes the first
detailed characterization of LSCs by single-cell transcriptomics.
This advance is owed to three crucial aspects of experimental
design.

Enrichment of relevant starting populations. LSCs are exces-
sively rare and generally present at below 0.1% of total bone
marrow16. In order to characterize these cells by single-cell
genomics, a prior enrichment, e.g., by sorting for CD34 expres-
sion, is essential. In future studies, this approach can be com-
plemented with markers that also label CD34- LSCs, such as
GPR56 (ref. 18).

Deep transcriptome sequencing. In some cases, the bulk of
leukemic cells displays gene expression signatures highly similar
to stem cells, as observed here for the CD34+ blasts of patient P1.
The differences between LSCs and residual healthy HSCs are even
more subtle. Previous work using shallow, microwell-based
sequencing of AML cells27 has not identified differences
between LSCs, CD34+ blasts and residual healthy HSCs.

High-confidence clonal tracking. When available, the use of
mitochondrial variants enables the confident assignment of cells
to clones, and thereby, a quantitative analysis of gene expression.
In two out of four AML patients, we identified high-confidence,
specific mitochondrial genetic markers for pre-leukemic and
leukemic sub-clones. In the third patient, allele frequencies of
leukemic and pre-leukemic mutations were around 50%, indi-
cating dominance of a single leukemic clone. In the final patient,
sub-clonal genomic mutations were observed, but not associated
with mitochondrial variability. Interestingly, this patient was only
18 years old and exhibited a leukemia possibly driven by a
“catastrophic” triplication of chromosome 8. The length of the
pre-leukemic phase, the buildup of mitochondrial variants accu-
mulated during normal ageing, as well as unknown factors
affecting mitochondrial mutation rates might all contribute to the
presence of mitochondrial marker mutations.

In the context of recent methods for clonal tracking within
single-cell transcriptomics27–29,31,33, the use of the MutaSeq
protocol and mitoClone computational pipeline combines the
strengths of previous approaches relying on either nuclear or
mitochondrial variants, but also has limitations. Specifically,
droplet- or microwell-based protocols for single-cell RNA-seq
and clonal tracking27–29 provide low coverage of mitochondrial

genomes and high dropout of nuclear genomic sites, and there-
fore do not enable a confident assignment of cells to clones.
Single-cell ATAC-sequencing33,34,47 and Smart-seq2 efficiently
cover mitochondrial genomes, but their coverage of nuclear
genomic sites is absent or low, hardening interpretability of the
data. Finally, while TARGET-seq addresses the limitation of
dropout of nuclear sites, depending on the implementation it
does not offer sufficient mitochondrial coverage, or is of very
limited throughput. Of all methods available to date, the
approach presented here converges on crucial aspects, specifically:
(a) high mitochondrial coverage, allowing us to identify benign
expanded clones de novo, even in the absence of known genetic
markers, (b) decreased dropout of relevant genomic mutations,
permitting the association of clones with genomic mutations, if
present, and (c) a highly confident assignment of cells to clones,
enabling quantitative analyses of clone-specific gene expression
(Supplementary Fig. 9). These capabilities expand the potential
applications of our approach to the study of clonal dynamics
during ageing and oncogenesis beyond the hematopoietic system.

Limitations. The major limitation of our pipeline is that it
requires natural somatic variability to resolve clones at high
confidence. In the absence of mitochondrial somatic variation, the
MutaSeq protocol can be used to draw qualitative statements on
clonal differentiation capacities (similar to ref. 28, and with an
improvement over Smart-seq2), but due to dropout neither
enables the statistically confident assignment of cells to clones,
nor differential expression testing between clones. In the presence
of mitochondrial somatic variation, an association between clones
and nuclear mutations is only possible for mutations in highly
expressed genes, and can be limited by the nature of the mutation
(e.g., frameshift mutations) and possibly other factors such as
sequence complexity. The third limitation of MutaSeq is its
relatively low throughput. This limitation is currently shared with
Smart-seq2 and alternative single-cell RNA-seq methods allowing
high-confident assignment of cells to clones31,33. Future work will
focus on the inclusion of full-length coverage of the mitochon-
drial genome in droplet-based single-cell RNA-seq platforms.

Methods
Patient and sample collection. The AML samples were collected from diagnostic
bone marrow aspirations at the University hospitals in Heidelberg, Germany, and
Mannheim, Germany after obtaining informed written consent. Bone marrow
mononuclear cells were isolated by density gradient centrifugation and stored in
liquid nitrogen until further use. All experiments involving human samples were
conducted in compliance with the Declaration of Helsinki and all relevant ethical
regulations and were approved by the ethics committees of the medical faculties
Heidelberg and Heidelberg-Mannheim of the University of Heidelberg, the
Bioethics Internal Advisory Committee (BIAC) at EMBL and the CRG bioethics
committee (CEIC-Parc de Salut Mar).

Deep exome sequencing and target selection. For exome sequencing, DNA was
extracted from 9 × 103 flow sorted CD34+ cells (for CD34+ leukemias: P1, P3) or
total bone marrow. As healthy controls, we used a buccal swap (P1), FACS-sorted
CD45-CD105+MSCs (P3) or in vitro expanded MSCs (P2 and P4)48. Sequencing
libraries were constructed using the SureSelect HS XT Target Enrichment System
v6 (Agilent), and a mean on-exon sequencing coverage of at least >70X was
obtained for each patient. Genomic alignments were performed using BWA MEM
v0.7.15 (ref. 49) and cancer variants were identified using Mutect2 v3.8 (P1 and P3)
and v4.0.9 (P2 and P4)50, following the GATK best practice recommendations.
Variants were annotated using ANNOVAR51. Output from Mutect2 was filtered to
remove variants that did not overlap with known genes. The final list of candidate
variants included only those with allele frequencies (AF) >4% in the cancer exome
sample and with an AF fourfold larger than in the healthy exome sample (Sup-
plementary Data 1). Finally, the candidates for targeting were hand-selected from
this list with a focus on cancer relevant genes, highly expressed genes, and potential
sub-clonal markers.

FACS sorting. Bone marrow mononuclear cells were stained according to standard
protocols. In brief, cells were thawed, washed once in medium (IMDM, 10% FCS,
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20 U/mL DNAse I) and 3 million cells were resuspended in 100 µL medium
containing antibodies diluted as described in Supplementary Table 1. Following
incubation for 30 min on ice, cells were resuspended in phosphate-buffered saline
with 2% FCS. For single-cell liquid cultures and MutaSeq, cells were stained with
fluorescent-labeled antibodies against lineage markers (CD4, CD8, CD19, CD20,
CD41a, CD235a) and additional markers (CD45RA, CD135, GPR56, CD34, CD38,
CD90, CD33, Tim3), and sorted according to the gating scheme illustrated in
Supplementary Fig. 2. BD FACS Fusion (BD Biosciences) equipped with 405, 488,
561, and 640 nm lasers were used. Of note, in P1 and P4, Lin+ cells could not be
efficiently processed into libraries for unknown reasons and are, therefore, exclu-
ded. A list of all antibodies used can be found in Supplementary Table 1.

Cell culture. K562 cells were purchased from ATCC (catalog number CCL-243)
and cultivated in RPMI-1640 (Thermo 21875034) supplemented with 10% FBS
and P/S.

Primer design. Primers for MutaSeq, for other single-cell targeting protocols tested
(Supplementary Fig. 1), as well as for targeted DNA sequencing were designed using
the computational pipeline available at http://git.embl.de/velten/PrimerDesign. For
MutaSeq, the refgene transcripts spanning each genomic site of interest were selected
as template; if multiple refgene transcripts were found for one site, a consensus
transcript containing only exonic sequences present in all variants was created. We
then used primer3 (ref. 52) to design five possible pairs of primers for each intended
target, with an amplicon length of 90–145 bp and a melting temperature of (nom-
inally) 60 °C. BLAST was used to remove primer pairs, which potentially form off-
target amplicons. Then, the pair complementarity (i.e., potential to form dimers) was
computed for each possible combination of primers across all target sites (forward-
reverse, forward-forward and reverse-reverse). In order to identify a set of primers
that covered the maximal number of genes while strictly forbidding primers with high
complementarity scores, a graph was constructed that connected all primers with
different targets to each other if their complementarity score was lower than 15. A
maximum clique-finding algorithm53 was then used to identify the largest mutually
connected component in the graph. Thereby, the largest number of targets that
efficiently avoids dimer formation was selected.

Nextera adapters were added to all primers designed accordingly (fwd: GTCGT
CGGCAGCGTCAGATGTGTATAAGAGACAG, rev: GTCTCGTGGGCTCGGA
GATGTGTATAAGAGACAG).

For targeted DNA-seq experiments, the genomic sequence surrounding the
target was used as template and nested PCR primers were designed. Inner primers
were designed as in the case of MutaSeq, and outer primers surrounding the inner
PCR product with an amplicon length of 200–350 bp and a nominal annealing
temperature of 58 °C were added. A list of all primers used for this study is
included in Supplementary Data 4.

Single-cell RNA sequencing with targeting of genomic sites of interest
(MutaSeq). MutaSeq is based on the Smart-seq2 protocol54,55 with the modifications
introduced by ref. 22. For lysis, we used 5 µL of a buffer containing 0.1 µL RNAsin+
(Promega), 0.04 µL 10% Triton X-100 (SigmaAldrich), 0.1 µL of 100 µM Smart-seq2
Oligo-dT primer (SigmaAldrich) and 1 µL dNTP mix (10mM each, NEB). In P1, we
had additionally included 0.075 µL of a 1:1,000,000 dilution of ERCC spike-in mix 1
(Ambion), as well as a control spike-in to quantify the false-positive detection rate of
mutations (Supplementary Fig. 10). Plates were snap frozen directly after sorting and
later thawed at 10 °C in a PCR machine for 5min and denatured at 72 °C for 3min. 5
µL of a buffer containing 0.25 µL RNAsin+, 2 µL 5x SMART FS buffer, 0.5 µL DTT
20mM, 1 µL SmartScribe enzyme (all TaKaRa) and 0.2 µL 50 µM Smart-seq2 TSO
(Exiqon) were then added and RT was performed for 90 min at 42 °C, 10 cycles of
[50 °C, 2min and 42 °C, 2min], and enzyme inactivation at 70 °C for 15min. Then,
we added 15 µL PCR mix containing 12.5 µL KAPA HiFi HS mastermix (Merck),
0.25 µL 10 µM Smart-seq2 ISPCR primer (SigmaAldrich) and 0.5 µL of a pool of all
targeting primers, present at 1 µM each. cDNA amplification was performed by 98 °C
3min, 21 cycles of [98 °C, 20 sec, 67 °C, 60 sec, 72 °C 6min], and 72 °C, 5 min. cDNA
was the cleaned up using an equal volume (25 µL) of CleanPCR beads (CleanNA) and
tagmented using homemade Tn5 (ref. 56). In brief, cDNA was diluted to ~150 pg/µL,
Tn5 was diluted 1:10–1:100 and combined with (20mM Tris-HCl pH7.5, 20mM
MgCl2, 50% DMF) and diluted DNA in a 1:2:1 volume ratio at total volume of 5 µL.
The mix was incubated at 55 °C for 3min and afterwards shifted to ice and inacti-
vated by the addition of 1.25 µL 0.2% SDS. PCR was performed by adding 6.75 µL of
KAPA HiFi HS mastermix, 0.75 µL of DMSO and 1.25 µL each of the forward i5 and
reverse i7 library primer (Supplementary Data 4) at 10 µM. PCR program was 72 °C
3min, 95 °C 30 sec, 12 cycles of [98 °C, 20 sec, 58 °C, 15 sec, 72 °C 30 sec], and 72 °
C, 3 min.

Single-cell cultures. Bone Marrow mononuclear cells from patient P1 were
stained and Lin- or Lin-CD34+ single cells were index-sorted into ultra-low
attachment 96-well plates (Corning) containing 100 µL StemSpan SFEM media
(Stem Cell Technologies). Media was supplemented with penicillin/streptomycin
(100 ng/mL), L-glutamine (100 ng/mL) and the following human cytokines (all
from Peprotech): SCF (20 ng/mL), Flt3-L (20 ng/mL), TPO (50 ng/mL), IL-3 (20
ng/mL), IL-6 (20 ng/mL), G-CSF (20 ng/mL), EPO (40 ng/mL), IL-5 (20 ng/mL),

M-CSF (20 ng/mL), GM-CSF (50 ng/mL). After 21 days at 5% CO2 and 37 °C,
colonies were imaged by microscopy, and processed as detailed in the following.

Targeted DNA sequencing by nested PCR amplification. Single-cell derived
colonies were transferred into 50 µL buffer RLT (Qiagen). Cleanup was performed
using CleanPCR beads (CleanNA) at a 1.8x volume ratio and eluted in 20 µL 10
mM Tris-HCl pH 7.8. 4.5 µL were transferred to a PCR plate containing 7.5 µL
Kapa HiFi HS mastermix and 3 µL of a pool of all outer primers (Supplementary
Data 4, each primer at 0.5 µM) were added, followed by a PCR program of 98 °C
3 min, 30 cycles of [98 °C, 20 sec, 63 °C, 60 sec, 72 °C 10 sec] and 72 °C, 5 min and
subsequent enzymatic cleanup with 2.5 µL 10x ExoI buffer, 0.4 µL ExoI (NEB) and
0.4 µL FastAP (ThermoFisher), 30 min incubation at 37 °C and 5 min inactivation
at 95 °C. Afterwards, 1 µL was transferred to a PCR tube containing 5.9 µL water,
7.5 µL Kapa HiFi HS mastermix and 0.6 µL of a pool of all inner primers (Sup-
plementary Data 4, each primer at 0.5 µM), followed by a PCR program of 98 °C 3
min, 15 cycles of [98 °C, 20 sec, 65 °C, 15 sec, 72 °C 30 sec], 72 °C, 5 min and
enzymatic cleanup as above. One microliter was then transferred into a PCR with
Nextera indexing primers (Supplementary Data 4) and amplified with 98 °C 3min, 10
cycles of [98 °C, 20 sec, 60 °C, 15 sec, 72 °C 30 sec] and 72 °C, 5min.

Processing of next generation sequencing data. Raw sequencing reads from
MutaSeq and Smart-seq2 experiments were processed using the BBDuk software to
trim both the standard Illumina Nextera adapters and the ISPCR adapter. Reads
were then mapped to the hg38 human genome (Ensembl release 95) using STAR
v2.6 (ref. 57), with the outFilterMismatchNmax parameter set to 5. Exonic gene
counts were tabulated, keeping only reads that did not overlap with targeted
regions, overlapped with only one annotated gene, and with lengths greater than
30 nt. For the colony DNA sequencing experiment, reads were mapped to the hg38
human genome using bwa mem (v0.7.17)49.

Analysis of mitochondrial mutations and reconstruction of clonal hierarchies
(mitoClone package). The following set of routines are implemented in the
mitoClone package available form https://github.com/veltenlab/mitoClone, and
documented further in the package vignettes.

Construction of allele count tables. For each cell and position of mitochondrial
genome as well as other genomic sites of interest, count tables for all nucleotides
(A/C/G/T), and deletions were created from the BAM files. To this end, the
mitoClone package implements the baseCountsFromBamList function, which
essentially serves as a wrapper to the bam2R function from the deepSNV R
package58.

Filtering of mitochondrial variants. To identify relevant somatic variants, we
implemented the mutationCallsFromCohort function. In short, we select coordi-
nates in the mitochondrial genome containing at least five reads each in at least 20
cells. To distinguish RNA editing events and true mitochondrial mutations at the
level of genomic sites, we then identify mitochondrial variants that occur in several
individuals. For this purpose only, individual cells are called as “mutant” in a given
site of the mitochondrial genome if at least 10% of the reads from that cell were
from a minor allele (i.e., distinct from the reference). Mutations present in at least
1% of cells in a given patient, but no more than 10 cells in any other individual, are
then included into the final data set and counts supporting the reference and
mutant alleles are computed as for sites of interest in the nuclear genome. Muta-
tions present in several individuals are stored as a blacklist and were used further
for filtering some of the data analyzed in Supplementary Fig. 4. Importantly, the
result from this step is simply a list of genomic sites that are likely to display genetic
variability across single cells. The vignette “Variant calling and blacklist creation of
the mitoClone package” provides further recommendation for the choice of fil-
tering parameters.

Construction of clonal hierarchies. To construct a basic clonal hierarchy, we
implemented the muta_cluster function. In short, all nuclear and mitochondrial
variants with coverage in at least 20% of cells are selected. Observed variant allele
frequencies (VAF) are then computed for each cell. From these values, we compute
a ternary matrix of observed variant calls Nc,g; for each cell c and genomic site g,
cells were classified as mutant (1) if the VAF was above 5%, reference (0) if it was
below 5%, or dropout (NA) if the site was not covered. We thereby assign a
genotype “mutant” or “non-mutant” to single cells at all genomic sites selected in
the filtering step, using a less stringent cutoff for calling the site as mutant. Then,
PhISICS36 is used to reconstruct a clonal tree. Unlike conventional algorithms for
the reconstruction of phylogenetic hierarchies, PhISCS is very robust with regard to
noise. For the figures presented in the main text, we ran PhISCS assuming a false-
positive rate (FPR) of 3% and an allelic dropout rate (AD) of 10% across all genes.
We additionally estimated the dropout rate on a per-gene level from the number of
complete dropouts, and varied the resulting parameter vector using Latin hyper-
cube sampling around the means using a beta distribution with concentration
parameter of 10. Across 80 sampling runs, the same tree was consistently obtained
except that the order of nodes within clones was swapped (Supplementary Data 5).
PhISCS results are, therefore, robust to variations in the parameters of the
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statistical technique used. The false-positive rate of MutaSeq had been empirically
estimated using spike-in controls (Supplementary Fig. 10).

Clustering of mutations into clones and assignment of cells to clones. PhISCS pro-
vides a maximum likelihood phylogenetic tree, enforcing an ordering of mutations.
In reality, however, not all intermediate evolutionary steps are represented by cells
present in the biological sample (for example, in P1, there are few or no cells
displaying the SRSF2 mutation, but not the mt:11559 G > A mutation). Hence, the
order of the nodes in the maximum likelihood tree is to some extent arbitrary and
driven by noise; even if there is some statistical support for a specific order, it may
be attractive in practice to merge mutations into clones so as to obtain a biologi-
cally meaningful, interpretable analysis. We therefore implemented the clus-
terMetaclones function, which employs a likelihood-based approach. The
maximum likelihood tree is split into contiguous linear branches (e.g., for P1, nuc:
SRSF2, mt:11559G > A, mt:7527DEL and nuc:EAPP constitute one such branch).
Within each branch, all nodes are then swapped with each other and the likelihood
of the data given the altered structure is calculated using the PhISCS model:

L ¼
Y

c

Y

g

α if Mcg ¼ 1&Ncg ¼ 0

β if Mcg ¼ 0&Ncg ¼ 1

1 if Ncg ¼ NA

1� αð Þ � 1� βð Þ else

8
>>><

>>>:
ð1Þ

Here,Mcg indicates whether according to the model, cell c is mutant at genomic site
g. α is the allelic dropout rate and β is the false-positive rate.

The branch is then split into clones such that within each clone, the average
difference in log-likelihood incurred by swapping nodes was smaller than 1 per cell.
This threshold is set arbitrarily to obtain a practically useful grouping of mutations
into clones. The vignette “Computation of clonal hierarchies and clustering of
mutations” of the mitoClone package provides further practical recommendations.

The same model was used to compute the likelihood of clonal assignments for
each cell. For the analysis in Supplementary Fig. 3b, this estimate was then
transformed to bits of information using the Kullback–Leibler distance:

DKL ¼
X

c

Lc log2 Lc � Cj jð Þ ð2Þ

where |C| is the total number of clones.

Quantitative analyses. For all quantitative analyses of clones (differential expression
testing, constribution of clones to cell types) cells with a likelihood of clonal
assignment of <0.8 were removed.

De novo mutation calling. To identify nuclear mutations associated with the clones,
we performed variant calling at a list of candidate sites from COSMIC37. We
therefore focused on a subset of COSMIC including putatively pathogenic SNVs
and small InDels, variants in expressed genes (mean > 20 reads per cell), and
variants associated with a primary site “haematopoietic_and_lymphoid_tissue”,
obtaining a list of 13,797 sites of interest. SNVs commonly observed as germline
variants in the 1000 genomes project data set were removed59. Allele count tables
were created for each site as described above. Finally, a beta-binomial model with
the same probability for mutant in all cells was compared to a beta-binomial model
with a different probabilities for mutant in each clone using Akaike’s Information
Criterion.

Single-cell gene expression data analysis. Cells with <500 distinct genes
observed and genes that appeared in <5 cells were removed. Additionally, data
from a healthy individual (“H1”) was downloaded from the NCBI Gene Expression
Omnibus (GSE75478). Data from all individuals was then integrated using sca-
norama according to the workflow described by the authors60. The low-
dimensional data representation obtained by scanorama was then loaded into
Seurat61, and default Seurat implementations of UMAP62,63 and graph-based
clustering were used for data visualization and clustering, respectively, using the
first 15 scanorama components.

For more detailed analyses of the T/NK-cell and HSC/MPP populations, cells
with these identities were selected and the MNN64 data integration workflow was
repeated using raw expression counts of these specific cell populations as input.

Differential expression testing was performed using MAST65, using a linear
model containing the variable of interest (e.g., clonal identity), a library quality
covariate (i.e., the number of genes observed per cell), and, when applicable,
additional covariates accounting for patient and cell type.

For the display of gene expression values only, data were normalized according
to the Seurat defaults (i.e., divided by the total count of RNA in the cell, multiplied
by a scale factor of 10,000 and log-transformation).

Data visualization. All plots were generated using the ggplot2 (v. 3.2.1) and
pheatmap (v. 1.0.12) packages in R 3.6.2. Boxplots are defined as follows: the
middle line corresponds to the median; lower and upper hinges correspond to first
and third quartiles. The upper whisker extends from the hinge to the largest value
no further than 1.5 * IQR from the hinge (where IQR is the inter-quartile range, or

distance between the first and third quartiles). The lower whisker extends from the
hinge to the smallest value at most 1.5 * IQR of the hinge. Data beyond the end of
the whiskers are called “outlying” points and are plotted individually66.

Statistics and reproducibility. Statistical analyses were performed using R 3.6.2.
Statistical details for each experiment are provided in the figure legends. FlowJo v10
TreeStar was used for the analysis of flow cytometry data.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Count tables and other processed data necessary to reproduce all analysis from the manuscript
are deposited in figshare with https://doi.org/10.6084/m9.figshare.12382685.v1 (ref. 67). Raw
sequencing data are deposited under a Data Access Agreement to protect patient privacy in
the European Genome-Phenome Archive with the accession id EGAS00001003414. Requests
for data access shall be addressed to LMS (larsms@embl.de). The following restrictions apply:
Research with the goal of identifying characteristics of the patient not related to the leukemia
(such as surname inference and ancestry research) are excluded. The use of the data for
projects not related to cancer research is excluded, exceptions may apply in the context of
research aiming to develop new bioinformatics methods. Sequencing data from the healthy
individuals are deposited in GEO with the accession id GSE75478. The source data underlying
Figs. 1f, 5d, 5h, and Supplementary Fig. 8c–e are provided as a Source Data file. All the other
data supporting the findings of this study are available within the article and its supplementary
information files and from the corresponding author upon reasonable request. Source data are
provided with this paper.

Code availability
Code for MutaSeq primer design is available at https://github.com/veltenlab/
PrimerDesign68. A package for data analysis is available at https://github.com/veltenlab/
mitoClone69.
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